Solveeit Logo

Question

Mathematics Question on Binomial theorem

If C0C_{0}, C1C_{1}, C2C_{2}, C3C_{3}, \cdots are binomial coefficients in the expansion of (1+x)n(1 + x)^n, then C03C14+C25C36+\frac{C_{0}}{3}- \frac{C_{1}}{4}+ \frac{C_{2}}{5}- \frac{C_{3}}{6}+ \cdots is equal to

A

1n+12n+2+1n+3\frac{1}{n+1}-\frac{2}{n+2}+\frac{1}{n+3}

B

1n+1+2n+21n+3\frac{1}{n+1}+\frac{2}{n+2}-\frac{1}{n+3}

C

1n+21n+2+1n+3\frac{1}{n+2}-\frac{1}{n+2}+\frac{1}{n+3}

D

2n+11n+2+2n+3\frac{2}{n+1}-\frac{1}{n+2}+\frac{2}{n+3}

Answer

1n+12n+2+1n+3\frac{1}{n+1}-\frac{2}{n+2}+\frac{1}{n+3}

Explanation

Solution

We know
(1x)n=C0C1x+C2x2+(1)n(Cnxn(1-x)^{n}=C_{0}-C_{1} x+C_{2} x^{2}-\ldots+(-1)^{n}\left(C_{n} \cdot x^{n}\right.
On multiplying both sides by x2x^{2}, we get
(1x)nx2=C0x2C1x3+C2x4+(1-x)^{n} x^{2}=C_{0} x^{2}-C_{1} x^{3}+C_{2} x^{4}+\ldots
On integrating both sides by taking limit 0 to 1
01(1x)nx2dx\therefore \int_{0}^{1}(1-x)^{n} x^{2} d x
=01(C0x2C1x3+C2x4+)dx=\int_{0}^{1}\left(C_{0} x^{2}-C_{1} x^{3}+C_{2} x^{4}+\ldots\right) d x
01xn(1x)2dx\int_{0}^{1} x^{n}(1-x)^{2} d x
=[C0x33C1x44+C2x55]01=\left[C_{0} \frac{x^{3}}{3}-C_{1} \frac{x^{4}}{4}+C_{2} \frac{x^{5}}{5}-\ldots\right]_{0}^{1}
01xn(1+x22x)dx=C03C14+C25\Rightarrow \int_{0}^{1} x^{n}\left(1+x^{2}-2 x\right) d x=\frac{C_{0}}{3}-\frac{C_{1}}{4}+\frac{C_{2}}{5}-\ldots
C03C14+C25\Rightarrow \frac{C_{0}}{3}-\frac{C_{1}}{4}+\frac{C_{2}}{5}-\ldots
=01(xn+xn+22xn+1)dx=\int_{0}^{1}\left(x^{n}+x^{n+2}-2 x^{n+1}\right) d x
=[xn+1n+1+xn+3n+32xn+2n+2]01=\left[\frac{x^{n+1}}{n+1}+\frac{x^{n+3}}{n+3}-\frac{2 x^{n+2}}{n+2}\right]_{0}^{1}
=[1n+1+1n+32n+2]=\left[\frac{1}{n+1}+\frac{1}{n+3}-\frac{2}{n+2}\right]