Question
Question: If by rotation of axes, the expression \(a{x^2} + 2hxy + b{y^2}\) be changed to \(a'x{'^2} + 2h'x'y'...
If by rotation of axes, the expression ax2+2hxy+by2 be changed to a′x′2+2h′x′y′+b′y′2. Then prove that a+b=a′+b′ and ab−h2=a′b′−h′2.
Solution
Let P(x,y) be a point in the xy plane. If the axes are rotated by an angle θ in the anticlockwise direction about the origin, then the coordinates of P with respect to the rotated axes will be given by the following relations:
x=x′cosθ−y′sinθ
y=x′sinθ+y′cosθ
Here, (x′,y′)denote the new coordinates of P, here we make use of some trigonometric identities also for further simplification.
Complete answer:
Given the expression ax2+2hxy+by2 is changed to a′x′2+2h′x′y′+b′y′2 when axes is rotated.
Now using rotation of axes method i.e., when the axes is rotated through an angle θ then we get,
x=x′cosθ−y′sinθ and y=x′sinθ+y′cosθ
The new axis of x being inclined at an angle θ to the old axis, we have to substitute x=x′cosθ−y′sinθ and y=x′sinθ+y′cosθ values in the expression ax2+2hxy+by2 respectively.
Now given expression is ax2+2hxy+by2
Substituting x and y values in the expression we get,
⇒a(x′cosθ−y′sinθ)2+2h(x′cosθ−y′sinθ)(x′sinθ+y′cosθ)+b(x′sinθ+y′cosθ)2
Now applying square and multiplying we get,
a(x′2cosθ+y′2sinθ−2x′y′sinθcosθ)+2h(x′2sinθcosθ+x′y′cos2θ−x′y′sin2θ−y′2sinθcosθ)+b(x′2sin2θ+y′2cos2θ+2x′y′sinθcosθ)
Now simplifying we get,
ax′2cosθ+ay′2sinθ−2ax′y′sinθcosθ+2hx′2sinθcosθ+hx′y′cos2θ−hx′y′sin2θ−hy′2sinθcosθ)+bx′2sin2θ+by′2cos2θ+2bx′y′sinθcosθ
Now transforming this expression the form of a′x′2+2h′x′y′+b′y’2, we get,
x′2(acos2θ+2hcosθsinθ+bsin2θ)+2x′y[−acosθsinθ+h(cos2θ−sin2θ)+bsinθcosθ]+y′2(asin2θ−2hcosθsinθ+bcos2θ)
Now comparing this expression with the expression a′x′2+2h′x′y′+b′y′2, we get,
a′=(acos2θ+2hcosθsinθ+bsin2θ)−−−−(1)
b′=(asin2θ−2hcosθsinθ+bcos2θ)−−−−−(2) and,h′=[−acosθsinθ+h(cos2θ−sin2θ)+bsinθcosθ]−−−−(3)
Now adding the equations (1) and (2) we get,
⇒a′+b′=acos2θ+2hcosθsinθ+bsin2θ+asin2θ−2hcosθsinθ+bcos2θ
Now adding the like terms we get,
⇒a′+b′=(acos2θ+asin2θ)+2hcosθsinθ+(bsin2θ+bcos2θ)−2hcosθsinθ
Now subtracting the like terms and taking common terms we get,
⇒a′+b′=a(cos2θ+sin2θ)+b(sin2θ+cos2θ)
Now using the trigonometric identity cos2θ+sin2θ=1 and substituting its value in the above equation we get,
⇒a′+b′=a(1)+b(1)
Now we get the required result,
⇒a′+b′=a+b,
Hence proved the first part.
Now for the second part, we have to prove ab−h2=a′b′−h′2for this take the equations (1) , (2) and (3) i.e.,
b′=(asin2θ−2hcosθsinθ+bcos2θ)−−−−−(2) and,h′=[−acosθsinθ+h(cos2θ−sin2θ)+bsinθcosθ]−−−−(3)
Now take the equation (1),
a′=acos2θ+2hcosθsinθ+bsin2θ
Now multiplying and dividing the equation with 2 we get,
a′=21(2acos2θ+4hcosθsinθ+2bsin2θ)
Now separating two terms we get,
a′=21[acos2θ+acos2θ+4hcosθsinθ+bsin2θ+bsin2θ]
Now using trigonometric identities convertcosintosinand convertsinintocosand using sin2θ=2sinθcosθwe get,
a′=21[acos2θ+a(1−sin2θ)+2hsin2θ+bsin2θ+b(1−cos2θ)],
Now expanding the terms in the brackets we get,
a′=21[acos2θ+a−asin2θ+2hsin2θ+bsin2θ+b−bcos2θ],
Now taking the like terms together we get,
a′=21[(a+b)+cos2θ(a−b)−sin2θ(a−b)+2hsin2θ]
Again taking the like terms we get,
a′=21[(a+b)+(a−b)(cos2θ−sin2θ)+2hsin2θ]
Now using again trigonometric identity we get,
a′=21[(a+b)+(a−b)cos2θ+2hsin2θ].
Now taking the equation (2) we get,
b′=(asin2θ−2hcosθsinθ+bcos2θ)−−−−−(2)
Now multiplying and dividing the equation with 2 we get,
b′=21(2asin2θ−4hcosθsinθ+2bcos2θ)
Now separating two terms we get,
b′=21[asin2θ+asin2θ−4hcosθsinθ+bcos2θ+bcos2θ]
Now using trigonometric identities convertcosintosinand convertsinintocosand using sin2θ=2sinθcosθwe get,
b′=21[asin2θ+a(1−cos2θ)−2hsin2θ+bcos2θ+b(1−sin2θ)],
Now expanding the terms in the brackets we get,
b′=21[asin2θ+a−acos2θ−2hsin2θ+bcos2θ+b−bsin2θ],
Now taking the like terms together we get,
b′=21[(a+b)+sin2θ(a−b)−cos2θ(a−b)−2hsin2θ]
Again taking the like terms we get,
b′=21[(a+b)−(a−b)(cos2θ−sin2θ)−2hsin2θ]
Now using again trigonometric identity we get,
b′=21[(a+b)−(a−b)cos2θ−2hsin2θ].
Now taking the equation (3) i.e.,
h′=[−acosθsinθ+h(cos2θ−sin2θ)+bsinθcosθ]−−−−(3)
Now multiplying and dividing the equation with 2 we get,
h′=21[−2acosθsinθ+2h(cos2θ−sin2θ)+2bsinθcosθ]
Now taking the like terms we get,
h′=21[−2cosθsinθ(a−b)+2h(cos2θ−sin2θ)]
Now using the trigonometric identities we get,
h′=21[−sin2θ(a−b)+2hcos2θ]
Now we have to prove ab−h2=a′b′−h’2 now multiplying and subtracting by substituting the values we got, we get,
(21[(a+b)+(a−b)cos2θ+2hsin2θ])(21[(a+b)−(a−b)cos2θ−2hsin2θ])−(21[−sin2θ(a−b)+2hcos2θ])2
Now multiplying and simplifying we get,
(41[(a+b)2−((a−b)cos2θ+2hsin2θ)2])−(41[sin22θ(a−b)2+4h2cos22θ−4hcos2θ(a−b)sin2θ])
Now eliminating the terms and grouping the like terms and simplifying we get,
∴a′b′−h’2=ab−h2 41[(a+b)2−(a−b)2(sin22θ+cos22θ)−4h2(cos2θ+sin22θ)]
Now using the trigonometric identity we get,
41[(a+b)2−(a−b)2−4h2],
Now again using the formula (a+b)2=a2+2ab+b2and (a−b)2=a2−2ab+b2 and simplifying we get,
41[a2+2ab+b2−a2+2ab−b2−4h2]
Now eliminating the terms we get,
41[4ab−4h2]
Now taking 4 common we get,
ab−h2,
∴a′b′−h′2=ab−h2,
Hence proved.
If by rotation of axes, the expression ax2+2hxy+by2 be changed to a′x’2+2h′x′y′+b′y’2, then a+b=a′+b′ and ab−h2=a′b′−h′2.
Hence proved.
Note:
In these type of questions we use the rotation of axes method i.e., when the axes is rotated through an angleθthen we get,x=x′cosθ−y′sinθand y=x′sinθ+y′cosθ,the new axis of x being inclined at an angleθ to the old axis, we have to substitute x=x′cosθ−y′sinθ and y=x′sinθ+y′cosθ values., and here using trigonometric identities is also a tricky part as there are many trigonometric identities students must have a clear idea which identity to use where.
Some of the identities and formulas are given below:
sin2x+cos2x=1,
tan2x+1=sec2x,
1+cot2x=csc2x
2sinxcosx=sin2x,
cos2x−sin2x=cos2x
tan2x=1−tan2x2tanx.