Solveeit Logo

Question

Question: If by rotation of axes, the expression \(a{x^2} + 2hxy + b{y^2}\) be changed to \(a'x{'^2} + 2h'x'y'...

If by rotation of axes, the expression ax2+2hxy+by2a{x^2} + 2hxy + b{y^2} be changed to ax2+2hxy+by2a'x{'^2} + 2h'x'y' + b'y{'^2}. Then prove that a+b=a+ba + b = a' + b' and abh2=abh2ab - {h^2} = a'b' - h{'^2}.

Explanation

Solution

Let P(x,y)P\left( {x,y} \right) be a point in the xyxy plane. If the axes are rotated by an angle θ\theta in the anticlockwise direction about the origin, then the coordinates of PP with respect to the rotated axes will be given by the following relations:
x=xcosθysinθx = x'\cos \theta - y'\sin \theta
y=xsinθ+ycosθy = x'\sin \theta + y'\cos \theta
Here, (x,y)\left( {x',y'} \right)denote the new coordinates of PP, here we make use of some trigonometric identities also for further simplification.

Complete answer:
Given the expression ax2+2hxy+by2a{x^2} + 2hxy + b{y^2} is changed to ax2+2hxy+by2a'x{'^2} + 2h'x'y' + b'y{'^2} when axes is rotated.
Now using rotation of axes method i.e., when the axes is rotated through an angle θ\theta then we get,
x=xcosθysinθx = x'\cos \theta - y'\sin \theta and y=xsinθ+ycosθy = x'\sin \theta + y'\cos \theta
The new axis of x being inclined at an angle θ\theta to the old axis, we have to substitute x=xcosθysinθx = x'\cos \theta - y'\sin \theta and y=xsinθ+ycosθy = x'\sin \theta + y'\cos \theta values in the expression ax2+2hxy+by2a{x^2} + 2hxy + b{y^2} respectively.
Now given expression is ax2+2hxy+by2a{x^2} + 2hxy + b{y^2}
Substituting xx and yy values in the expression we get,
a(xcosθysinθ)2+2h(xcosθysinθ)(xsinθ+ycosθ)+b(xsinθ+ycosθ)2\Rightarrow a{\left( {x'\cos \theta - y'\sin \theta } \right)^2} + 2h\left( {x'\cos \theta - y'\sin \theta } \right)\left( {x'\sin \theta + y'\cos \theta } \right) + b{\left( {x'\sin \theta + y'\cos \theta } \right)^2}
Now applying square and multiplying we get,
a(x2cosθ+y2sinθ2xysinθcosθ)+2h(x2sinθcosθ+xycos2θxysin2θy2sinθcosθ)+b(x2sin2θ+y2cos2θ+2xysinθcosθ)a(x{'^2}\cos \theta + y{'^2}\sin \theta - 2x'y'\sin \theta \cos \theta ) + 2h(x{'^2}\sin \theta \cos \theta + x'y'{\cos ^2}\theta - x'y'{\sin ^2}\theta - y{'^2}\sin \theta \cos \theta ) + b(x{'^2}{\sin ^2}\theta + y{'^2}{\cos ^2}\theta + 2x'y'\sin \theta \cos \theta )
Now simplifying we get,
ax2cosθ+ay2sinθ2axysinθcosθ+2hx2sinθcosθ+hxycos2θhxysin2θhy2sinθcosθ)+bx2sin2θ+by2cos2θ+2bxysinθcosθax{'^2}\cos \theta + ay{'^2}\sin \theta - 2ax'y'\sin \theta \cos \theta + 2hx{'^2}\sin \theta \cos \theta + hx'y'{\cos ^2}\theta - hx'y'{\sin ^2}\theta - hy{'^2}\sin \theta \cos \theta ) + bx{'^2}{\sin ^2}\theta + by{'^2}{\cos ^2}\theta + 2bx'y'\sin \theta \cos \theta
Now transforming this expression the form of ax2+2hxy+by2a'x{'^2} + 2h'x'y' + b'y’{^2}, we get,
x2(acos2θ+2hcosθsinθ+bsin2θ)+2xy[acosθsinθ+h(cos2θsin2θ)+bsinθcosθ]+y2(asin2θ2hcosθsinθ+bcos2θ)x{'^2}(a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta ) + 2x'y[ - a\cos \theta \sin \theta + h({\cos ^2}\theta - {\sin ^2}\theta ) + b\sin \theta \cos \theta ] + y{'^2}(a{\sin ^2}\theta - 2h\cos \theta \sin \theta + b{\cos ^2}\theta )
Now comparing this expression with the expression ax2+2hxy+by2a'x{'^2} + 2h'x'y' + b'y{'^2}, we get,
a=(acos2θ+2hcosθsinθ+bsin2θ)(1)a' = \left( {a{{\cos }^2}\theta + 2h\cos \theta \sin \theta + b{{\sin }^2}\theta } \right) - - - - (1)
b=(asin2θ2hcosθsinθ+bcos2θ)(2)b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2) and,h=[acosθsinθ+h(cos2θsin2θ)+bsinθcosθ](3)h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)
Now adding the equations (1) and (2) we get,
a+b=acos2θ+2hcosθsinθ+bsin2θ+asin2θ2hcosθsinθ+bcos2θ\Rightarrow a' + {b'} = a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta + a{\sin ^2}\theta - 2h\cos \theta \sin \theta + b{\cos ^2}\theta
Now adding the like terms we get,
a+b=(acos2θ+asin2θ)+2hcosθsinθ+(bsin2θ+bcos2θ)2hcosθsinθ\Rightarrow a' + {b'} = \left( {a{{\cos }^2}\theta + a{{\sin }^2}\theta } \right) + 2h\cos \theta \sin \theta + \left( {b{{\sin }^2}\theta + b{{\cos }^2}\theta } \right) - 2h\cos \theta \sin \theta
Now subtracting the like terms and taking common terms we get,
a+b=a(cos2θ+sin2θ)+b(sin2θ+cos2θ)\Rightarrow a' + {b'} = a\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) + b\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)
Now using the trigonometric identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 and substituting its value in the above equation we get,
a+b=a(1)+b(1)\Rightarrow a' + {b'} = a\left( 1 \right) + b\left( 1 \right)
Now we get the required result,
a+b=a+b\Rightarrow a' + {b'} = a + b,
Hence proved the first part.
Now for the second part, we have to prove abh2=abh2ab - {h^2} = a'b' - h{'^2}for this take the equations (1) , (2) and (3) i.e.,
b=(asin2θ2hcosθsinθ+bcos2θ)(2)b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2) and,h=[acosθsinθ+h(cos2θsin2θ)+bsinθcosθ](3)h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)
Now take the equation (1),
a=acos2θ+2hcosθsinθ+bsin2θa' = a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta
Now multiplying and dividing the equation with 2 we get,
a=12(2acos2θ+4hcosθsinθ+2bsin2θ)a' = \dfrac{1}{2}\left( {2a{{\cos }^2}\theta + 4h\cos \theta \sin \theta + 2b{{\sin }^2}\theta } \right)
Now separating two terms we get,
a=12[acos2θ+acos2θ+4hcosθsinθ+bsin2θ+bsin2θ]a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a{{\cos }^2}\theta + 4h\cos \theta \sin \theta + b{{\sin }^2}\theta + b{{\sin }^2}\theta } \right]
Now using trigonometric identities convertcos\cos intosin\sin and convertsin\sin intocos\cos and using sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta we get,
a=12[acos2θ+a(1sin2θ)+2hsin2θ+bsin2θ+b(1cos2θ)]a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a\left( {1 - {{\sin }^2}\theta } \right) + 2h\sin 2\theta + b{{\sin }^2}\theta + b\left( {1 - {{\cos }^2}\theta } \right)} \right],
Now expanding the terms in the brackets we get,
a=12[acos2θ+aasin2θ+2hsin2θ+bsin2θ+bbcos2θ]a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a - a{{\sin }^2}\theta + 2h\sin 2\theta + b{{\sin }^2}\theta + b - b{{\cos }^2}\theta } \right],
Now taking the like terms together we get,
a=12[(a+b)+cos2θ(ab)sin2θ(ab)+2hsin2θ]a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + {{\cos }^2}\theta \left( {a - b} \right) - {{\sin }^2}\theta \left( {a - b} \right) + 2h\sin 2\theta } \right]
Again taking the like terms we get,
a=12[(a+b)+(ab)(cos2θsin2θ)+2hsin2θ]a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + 2h\sin 2\theta } \right]
Now using again trigonometric identity we get,
a=12[(a+b)+(ab)cos2θ+2hsin2θ]a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right].
Now taking the equation (2) we get,
b=(asin2θ2hcosθsinθ+bcos2θ)(2)b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2)
Now multiplying and dividing the equation with 2 we get,
b=12(2asin2θ4hcosθsinθ+2bcos2θ)b' = \dfrac{1}{2}\left( {2a{{\sin }^2}\theta - 4h\cos \theta \sin \theta + 2b{{\cos }^2}\theta } \right)
Now separating two terms we get,
b=12[asin2θ+asin2θ4hcosθsinθ+bcos2θ+bcos2θ]b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a{{\sin }^2}\theta - 4h\cos \theta \sin \theta + b{{\cos }^2}\theta + b{{\cos }^2}\theta } \right]
Now using trigonometric identities convertcos\cos intosin\sin and convertsin\sin intocos\cos and using sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta we get,
b=12[asin2θ+a(1cos2θ)2hsin2θ+bcos2θ+b(1sin2θ)]b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a\left( {1 - {{\cos }^2}\theta } \right) - 2h\sin 2\theta + b{{\cos }^2}\theta + b\left( {1 - {{\sin }^2}\theta } \right)} \right],
Now expanding the terms in the brackets we get,
b=12[asin2θ+aacos2θ2hsin2θ+bcos2θ+bbsin2θ]b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a - a{{\cos }^2}\theta - 2h\sin 2\theta + b{{\cos }^2}\theta + b - b{{\sin }^2}\theta } \right],
Now taking the like terms together we get,
b=12[(a+b)+sin2θ(ab)cos2θ(ab)2hsin2θ]b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + {{\sin }^2}\theta \left( {a - b} \right) - {{\cos }^2}\theta \left( {a - b} \right) - 2h\sin 2\theta } \right]
Again taking the like terms we get,
b=12[(a+b)(ab)(cos2θsin2θ)2hsin2θ]b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) - 2h\sin 2\theta } \right]
Now using again trigonometric identity we get,
b=12[(a+b)(ab)cos2θ2hsin2θ]b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\cos 2\theta - 2h\sin 2\theta } \right].
Now taking the equation (3) i.e.,
h=[acosθsinθ+h(cos2θsin2θ)+bsinθcosθ](3)h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)
Now multiplying and dividing the equation with 2 we get,
h=12[2acosθsinθ+2h(cos2θsin2θ)+2bsinθcosθ]h' = \dfrac{1}{2}\left[ { - 2a\cos \theta \sin \theta + 2h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + 2b\sin \theta \cos \theta } \right]
Now taking the like terms we get,
h=12[2cosθsinθ(ab)+2h(cos2θsin2θ)]h' = \dfrac{1}{2}\left[ { - 2\cos \theta \sin \theta \left( {a - b} \right) + 2h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)} \right]
Now using the trigonometric identities we get,
h=12[sin2θ(ab)+2hcos2θ]h' = \dfrac{1}{2}\left[ { - \sin 2\theta \left( {a - b} \right) + 2h\cos 2\theta } \right]
Now we have to prove abh2=abh2ab - {h^2} = a'b' - h’{^2} now multiplying and subtracting by substituting the values we got, we get,
(12[(a+b)+(ab)cos2θ+2hsin2θ])(12[(a+b)(ab)cos2θ2hsin2θ])(12[sin2θ(ab)+2hcos2θ])2\left( {\dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right]} \right)\left( {\dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\cos 2\theta - 2h\sin 2\theta } \right]} \right)- {\left( {\dfrac{1}{2}\left[ { - \sin 2\theta \left( {a - b} \right) + 2h\cos 2\theta } \right]} \right)^2}
Now multiplying and simplifying we get,
(14[(a+b)2((ab)cos2θ+2hsin2θ)2])(14[sin22θ(ab)2+4h2cos22θ4hcos2θ(ab)sin2θ])\left( {\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {\left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right)}^2}} \right]} \right) - \left( {\dfrac{1}{4}\left[ {{{\sin }^2}2\theta {{\left( {a - b} \right)}^2} + 4{h^2}{{\cos }^2}2\theta - 4h\cos 2\theta \left( {a - b} \right)\sin 2\theta } \right]} \right)

Now eliminating the terms and grouping the like terms and simplifying we get,
abh2=abh2\therefore a'b' - h’{^2} = ab - {h^2} 14[(a+b)2(ab)2(sin22θ+cos22θ)4h2(cos2θ+sin22θ)]\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2}\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right) - 4{h^2}\left( {{{\cos }^2}\theta + {{\sin }^2}2\theta } \right)} \right]
Now using the trigonometric identity we get,
14[(a+b)2(ab)24h2]\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} - 4{h^2}} \right],
Now again using the formula (a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}and (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} and simplifying we get,
14[a2+2ab+b2a2+2abb24h2]\dfrac{1}{4}\left[ {{a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} - 4{h^2}} \right]
Now eliminating the terms we get,
14[4ab4h2]\dfrac{1}{4}\left[ {4ab - 4{h^2}} \right]
Now taking 4 common we get,
abh2ab - {h^2},
abh2=abh2\therefore a'b' - h{'^2} = ab - {h^2},
Hence proved.

If by rotation of axes, the expression ax2+2hxy+by2a{x^2} + 2hxy + b{y^2} be changed to ax2+2hxy+by2a'x’{^2} + 2h'x'y' + b'y’{^2}, then a+b=a+ba + b = a' + b' and abh2=abh2ab - {h^2} = a'b' - h{'^2}.
Hence proved.

Note:
In these type of questions we use the rotation of axes method i.e., when the axes is rotated through an angleθ\theta then we get,x=xcosθysinθx = x'\cos \theta - y'\sin \theta and y=xsinθ+ycosθy = x'\sin \theta + y'\cos \theta ,the new axis of x being inclined at an angleθ\theta to the old axis, we have to substitute x=xcosθysinθx = x'\cos \theta - y'\sin \theta and y=xsinθ+ycosθy = x'\sin \theta + y'\cos \theta values., and here using trigonometric identities is also a tricky part as there are many trigonometric identities students must have a clear idea which identity to use where.
Some of the identities and formulas are given below:
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1,
tan2x+1=sec2x{\tan ^2}x + 1 = {\sec ^2}x,
1+cot2x=csc2x1 + {\cot ^2}x = {\csc ^2}x
2sinxcosx=sin2x2\sin x\cos x = \sin 2x,
cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x
tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}.