Solveeit Logo

Question

Question: If (b<sub>2</sub> – b<sub>1</sub>) (b<sub>3</sub> – b<sub>1</sub>) + (a<sub>2</sub> – a<sub>1</sub>)...

If (b2 – b1) (b3 – b1) + (a2 – a1) (a3 – a1) = 0, then circumcentre of the triangle having vertices (a1, b1), (a2, b2) and (a3, b3) is

A

(a1+a22,b1+b22)\left( \frac{a_{1} + a_{2}}{2},\frac{b_{1} + b_{2}}{2} \right)

B

(a1+a2+a33,b1+b2+b33)\left( \frac{a_{1} + a_{2} + a_{3}}{3},\frac{b_{1} + b_{2} + b_{3}}{3} \right)

C

(a2+a32,b2+b32)\left( \frac{a_{2} + a_{3}}{2},\frac{b_{2} + b_{3}}{2} \right)

D

(a1+a32,b1+b32)\left( \frac{a_{1} + a_{3}}{2},\frac{b_{1} + b_{3}}{2} \right)

Answer

(a2+a32,b2+b32)\left( \frac{a_{2} + a_{3}}{2},\frac{b_{2} + b_{3}}{2} \right)

Explanation

Solution

(b2 – b1) (b3 – b1) = – (a2 – a1) (a3 – a1)

(b2b1a2a1)(b3b1a3a1)\left( \frac{b_{2} - b_{1}}{a_{2} - a_{1}} \right)\left( \frac{b_{3} - b_{1}}{a_{3} - a_{1}} \right) = – 1 Q m1m2 = –1

(a2+a32,b2+b33)\left( \frac{a_{2} + a_{3}}{2},\frac{b_{2} + b_{3}}{3} \right)