Solveeit Logo

Question

Question: If both the standard deviation and mean of the data set \({{x}_{1}},{{x}_{2}},{{x}_{3}},...,{{x}_{50...

If both the standard deviation and mean of the data set x1,x2,x3,...,x50{{x}_{1}},{{x}_{2}},{{x}_{3}},...,{{x}_{50}} are 1616. Then the mean if the data set (x14)2,(x24)2,(x34)2,...,(x504)2{{\left( {{x}_{1}}-4 \right)}^{2}},{{\left( {{x}_{2}}-4 \right)}^{2}},{{\left( {{x}_{3}}-4 \right)}^{2}},...,{{\left( {{x}_{50}}-4 \right)}^{2}} is?
A. 200200
B. 100100
C. 400400
D. 16001600

Explanation

Solution

From the given data that the mean and standard deviation of x1,x2,x3,...,x50{{x}_{1}},{{x}_{2}},{{x}_{3}},...,{{x}_{50}} is 1616, we will use basic formulas of mean and standard deviation and we will equate the given values to find the values of xi50,xi250\dfrac{\sum{{{x}_{i}}}}{50},\dfrac{\sum{{{x}_{i}}^{2}}}{50}. Now using the both obtained values we will find the mean of the data set (x14)2,(x24)2,(x34)2,...,(x504)2{{\left( {{x}_{1}}-4 \right)}^{2}},{{\left( {{x}_{2}}-4 \right)}^{2}},{{\left( {{x}_{3}}-4 \right)}^{2}},...,{{\left( {{x}_{50}}-4 \right)}^{2}} from the basic formula of mean i.e. ratio of the sum of the variables to number of variables.

Complete step by step answer:
Given that,
The mean and standard deviation of x1,x2,x3,...,x50{{x}_{1}},{{x}_{2}},{{x}_{3}},...,{{x}_{50}} is 1616. Mathematically we will write it as
Mean=x1+x2+x3+...+x5050 M=16....(i) \begin{aligned} & \text{Mean}=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+...+{{x}_{50}}}{50} \\\ & \Rightarrow M=16....\left( \text{i} \right) \\\ \end{aligned}
Standard deviation is
S.D=(x1M)2+(x2M)2+(x3M)2+...+(x50M)250 16=xi250M250 16=xi250M2 \begin{aligned} & \text{S}\text{.D}=\sqrt{\dfrac{{{\left( {{x}_{1}}-M \right)}^{2}}+{{\left( {{x}_{2}}-M \right)}^{2}}+{{\left( {{x}_{3}}-M \right)}^{2}}+...+{{\left( {{x}_{50}}-M \right)}^{2}}}{50}} \\\ & \Rightarrow 16=\sqrt{\dfrac{{{\sum{{{x}_{i}}^{2}-50M}}^{2}}}{50}} \\\ &\Rightarrow 16=\sqrt{\dfrac{\sum{{{x}_{i}}^{2}}}{50}-{{M}^{2}}} \\\ \end{aligned}
Squaring on both sides, we will have
162=xi250M2 256=xi250M2 \begin{aligned} & {{16}^{2}}=\dfrac{\sum{{{x}_{i}}^{2}}}{50}-{{M}^{2}} \\\ & \Rightarrow 256=\dfrac{\sum{{{x}_{i}}^{2}}}{50}-{{M}^{2}} \\\ \end{aligned}
From equation (i)\left( \text{i} \right) we have the value M=16M=16, then
256=xi250162 512=xi250....(ii) \begin{aligned} & 256=\dfrac{\sum{{{x}_{i}}^{2}}}{50}-{{16}^{2}} \\\ &\Rightarrow 512=\dfrac{\sum{{{x}_{i}}^{2}}}{50}....\left( \text{ii} \right) \\\ \end{aligned}
Now the mean of the data set (x14)2,(x24)2,(x34)2,...,(x504)2{{\left( {{x}_{1}}-4 \right)}^{2}},{{\left( {{x}_{2}}-4 \right)}^{2}},{{\left( {{x}_{3}}-4 \right)}^{2}},...,{{\left( {{x}_{50}}-4 \right)}^{2}} is
Mean=(x14)2+(x24)2+(x34)2+...+(x504)250 =(xi4)250 =(xi22.4.xi+16)50 =xi2508xi50+50×1650 \begin{aligned} & Mean=\dfrac{{{\left( {{x}_{1}}-4 \right)}^{2}}+{{\left( {{x}_{2}}-4 \right)}^{2}}+{{\left( {{x}_{3}}-4 \right)}^{2}}+...+{{\left( {{x}_{50}}-4 \right)}^{2}}}{50} \\\ & =\dfrac{\sum{{{\left( {{x}_{i}}-4 \right)}^{2}}}}{50} \\\ & =\dfrac{\sum{\left( {{x}_{i}}^{2}-2.4.{{x}_{i}}+16 \right)}}{50} \\\ & =\dfrac{\sum{{{x}_{i}}^{2}}}{50}-8\dfrac{\sum{{{x}_{i}}}}{50}+\dfrac{50\times 16}{50} \\\ \end{aligned}
From equations (i)\left( \text{i} \right) and (ii)\left( \text{ii} \right), we have
Mean=5128(16)+16 =400 \begin{aligned} & Mean=512-8\left( 16 \right)+16 \\\ & =400 \\\ \end{aligned}
Hence the mean of the dataset (x14)2,(x24)2,(x34)2,...,(x504)2{{\left( {{x}_{1}}-4 \right)}^{2}},{{\left( {{x}_{2}}-4 \right)}^{2}},{{\left( {{x}_{3}}-4 \right)}^{2}},...,{{\left( {{x}_{50}}-4 \right)}^{2}} is 400400.

So, the correct answer is “Option C”.

Note: We can also solve the above problem in other method i.e. if the mean of the variables x1,x2,x3,...,x50{{x}_{1}},{{x}_{2}},{{x}_{3}},...,{{x}_{50}} is M1{{M}_{1}}, then the mean of the variables (x14)2,(x24)2,(x34)2,...,(x504)2{{\left( {{x}_{1}}-4 \right)}^{2}},{{\left( {{x}_{2}}-4 \right)}^{2}},{{\left( {{x}_{3}}-4 \right)}^{2}},...,{{\left( {{x}_{50}}-4 \right)}^{2}} is given by (M14)2{{\left( {{M}_{1}}-4 \right)}^{2}} and the variance of the both the data set is same. Then
Variance of (x14)2,(x24)2,(x34)2,...,(x504)2{{\left( {{x}_{1}}-4 \right)}^{2}},{{\left( {{x}_{2}}-4 \right)}^{2}},{{\left( {{x}_{3}}-4 \right)}^{2}},...,{{\left( {{x}_{50}}-4 \right)}^{2}} is
σ12=(xi4)2(164)250 256=(xi4)25050×12250 (xi4)250=400 \begin{aligned} & \sigma _{1}^{2}=\dfrac{\sum{{{\left( {{x}_{i}}-4 \right)}^{2}}-{{\left( 16-4 \right)}^{2}}}}{50} \\\ & 256=\dfrac{\sum{{{\left( {{x}_{i}}-4 \right)}^{2}}}}{50}-\dfrac{50\times {{12}^{2}}}{50} \\\ & \dfrac{\sum{{{\left( {{x}_{i}}-4 \right)}^{2}}}}{50}=400 \\\ \end{aligned}
Hence the mean of the data set (x14)2,(x24)2,(x34)2,...,(x504)2{{\left( {{x}_{1}}-4 \right)}^{2}},{{\left( {{x}_{2}}-4 \right)}^{2}},{{\left( {{x}_{3}}-4 \right)}^{2}},...,{{\left( {{x}_{50}}-4 \right)}^{2}} is 400400.
From both the methods we get the same answer.