Solveeit Logo

Question

Question: If both roots of the quadratic equation x<sup>2</sup> – 2kx + (k<sup>2</sup> + k – 5) = 0 are less ...

If both roots of the quadratic equation

x2 – 2kx + (k2 + k – 5) = 0 are less than 5 then k lies in interval –

A

(5, 6)

B

(6, ∞)

C

(– ∞, 4)

D

[4, 5]

Answer

(– ∞, 4)

Explanation

Solution

D ≥ 0, b2a\frac{–b}{2a} < 5, f(5) > 0 ; D ≥ 0 ⇒ 4[k2 – (k2 + k – 5)] ≥ 0

k – 5 ≤ 0 ⇒ k ≤ 5 .......(i)

b2a–\frac{b}{2a} < 5 ⇒ (2k)2\frac{(–2k)}{2} < 5 ⇒ k < 5 .....(ii)

f(5) > 0 ⇒ 25 – 10k + k2 + k – 5 > 0

k2 – 9k + 20 > 0 ; (k – 5) (k – 4) > 0

k ∈ (– ∞, 4) ∪ (5, ∞) ...(iii)

⇒ k ∈ (– ∞ , 4)