Question
Question: If both roots of the quadratic equation x<sup>2</sup> – 2kx + (k<sup>2</sup> + k – 5) = 0 are less ...
If both roots of the quadratic equation
x2 – 2kx + (k2 + k – 5) = 0 are less than 5 then k lies in interval –
A
(5, 6)
B
(6, ∞)
C
(– ∞, 4)
D
[4, 5]
Answer
(– ∞, 4)
Explanation
Solution
D ≥ 0, 2a–b < 5, f(5) > 0 ; D ≥ 0 ⇒ 4[k2 – (k2 + k – 5)] ≥ 0
k – 5 ≤ 0 ⇒ k ≤ 5 .......(i)
–2ab < 5 ⇒ 2(–2k) < 5 ⇒ k < 5 .....(ii)
f(5) > 0 ⇒ 25 – 10k + k2 + k – 5 > 0
k2 – 9k + 20 > 0 ; (k – 5) (k – 4) > 0
k ∈ (– ∞, 4) ∪ (5, ∞) ...(iii)
⇒ k ∈ (– ∞ , 4)