Solveeit Logo

Question

Question: If both mean and standard deviation of 50 observations $x_1, x_2, x_3 ...x_{50}$ are equal to 8. If ...

If both mean and standard deviation of 50 observations x1,x2,x3...x50x_1, x_2, x_3 ...x_{50} are equal to 8. If the 2)2,(x22)2,(x32)2,...(x502)22)^2, (x_2-2)^2, (x_3-2)^2,...(x_{50} - 2)^2 is λ\lambda, then λ2\frac{\lambda}{2} is equal to _____

Answer

2500

Explanation

Solution

Given:

  • Mean, xˉ=8\bar{x} = 8
  • Standard Deviation, σ=8    σ2=64\sigma = 8 \;\Rightarrow\; \sigma^2 = 64
  • Number of observations, n=50n = 50
  1. Calculate the sums:

    • Total sum of observations: i=150xi=nxˉ=50×8=400\sum_{i=1}^{50} x_i = n \cdot \bar{x} = 50 \times 8 = 400
    • Sum of squared deviations from the mean: i=150(xi8)2=nσ2=50×64=3200.\sum_{i=1}^{50}(x_i-8)^2 = n \cdot \sigma^2 = 50 \times 64 = 3200.
  2. Express (xi2)2(x_i-2)^2 in terms of (xi8)(x_i-8):

    xi2=(xi8)+6x_i-2 = (x_i-8) + 6

    Therefore,

    (xi2)2=(xi8)2+12(xi8)+36.(x_i-2)^2 = (x_i-8)^2 + 12(x_i-8) + 36.
  3. Sum over all observations:

    i=150(xi2)2=i=150(xi8)2+12i=150(xi8)+50×36.\sum_{i=1}^{50}(x_i-2)^2 = \sum_{i=1}^{50}(x_i-8)^2 + 12\sum_{i=1}^{50}(x_i-8) + 50 \times 36.

    Notice that:

    i=150(xi8)=(i=150xi)50×8=400400=0.\sum_{i=1}^{50}(x_i-8) = \left(\sum_{i=1}^{50} x_i\right) - 50 \times 8 = 400 - 400 = 0.

    Hence,

    i=150(xi2)2=3200+0+1800=5000.\sum_{i=1}^{50}(x_i-2)^2 = 3200 + 0 + 1800 = 5000.

    Let λ=5000\lambda = 5000.

  4. Find λ2\frac{\lambda}{2}:

    λ2=50002=2500.\frac{\lambda}{2} = \frac{5000}{2} = 2500.