Question
Question: If \(\beta = \theta - \alpha\), then \(y^{2} - 2y - 2(1 + \alpha) = 0\) (where \(- 1 \leq y \leq 1\)...
If β=θ−α, then y2−2y−2(1+α)=0 (where −1≤y≤1).
A
(∵ −1≤sin2x≤1)
B
≥0
C
⇒
D
None of these
Answer
(∵ −1≤sin2x≤1)
Explanation
Solution
We have 4θ=kπ
θ=2kπθ=4kπ
⇒ tan3θ+1tan3θ−1=3
⇒ tan(3θ−4π)=tan3π
3θ−(π/4)=nπ+(π/3)3θ=nπ+127π and θ=3nπ+367π
2−2sin2x+3sinx−3=0⇒and (2sinx−1)(sinx−1)=0=0, ⇒
Therefore, the general solution of sinx=21 and sinx=1is⇒where x=6π,65π.