Solveeit Logo

Question

Question: If \(\beta = \theta - \alpha\), then \(y^{2} - 2y - 2(1 + \alpha) = 0\) (where \(- 1 \leq y \leq 1\)...

If β=θα\beta = \theta - \alpha, then y22y2(1+α)=0y^{2} - 2y - 2(1 + \alpha) = 0 (where 1y1- 1 \leq y \leq 1).

A

( 1sin2x1)(\because\text{ } - 1 \leq \sin 2x \leq 1)

B

0\geq 0

C

\Rightarrow

D

None of these

Answer

( 1sin2x1)(\because\text{ } - 1 \leq \sin 2x \leq 1)

Explanation

Solution

We have θ4=kπ\frac{\theta}{4} = k\pi

θ=2kπθ=4kπ\theta = 2k\pi\theta = 4k\pi

\Rightarrow tan3θ1tan3θ+1=3\frac{\tan 3\theta - 1}{\tan 3\theta + 1} = \sqrt{3}

\Rightarrow tan(3θπ4)=tanπ3\tan\left( 3\theta - \frac{\pi}{4} \right) = \tan\frac{\pi}{3}

3θ(π/4)=nπ+(π/3)3θ=nπ+7π123\theta - (\pi/4) = n\pi + (\pi/3)3\theta = n\pi + \frac{7\pi}{12} and θ=nπ3+7π36\theta = \frac{n\pi}{3} + \frac{7\pi}{36}

22sin2x+3sinx3=02 - 2\sin^{2}x + 3\sin x - 3 = 0 \Rightarrowand (2sinx1)(sinx1)=0(2\sin x - 1)(\sin x - 1) = 0=0, \Rightarrow

Therefore, the general solution of sinx=12\sin x = \frac{1}{2} and sinx=1\sin x = 1is\Rightarrowwhere x=π6,5π6x = \frac{\pi}{6},\frac{5\pi}{6}.