Question
Question: If $\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix} = (A + Bx)(x - A)^...
If x−42x2x2xx−42x2x2xx−4=(A+Bx)(x−A)2, then the ordered pair (A, B) is equal to

Answer
(-4, 5)
Explanation
Solution
Solution:
Given the matrix
x−42x2x2xx−42x2x2xx−4,we recognize it has the form with diagonal entries r=x−4 and off-diagonals s=2x. A standard formula for such a matrix is:
det=(r−s)2⋅(r+2s).-
First, compute r−s:
r−s=(x−4)−2x=−x−4,so
(r−s)2=(−x−4)2=(x+4)2. -
Next, compute r+2s:
r+2s=(x−4)+2(2x)=x−4+4x=5x−4.
Thus, the determinant equals:
(x+4)2(5x−4).We are given that
det=(A+Bx)(x−A)2.By comparing, we identify:
- (x−A)2=(x+4)2 ⟹ A=−4,
- A+Bx=5x−4 ⟹ substituting A=−4 gives −4+Bx=5x−4, so B=5.
Answer: The ordered pair (A,B)=(−4,5).
Core Explanation:
- Use the formula for determinants of matrices with r on diagonal and s off-diagonals.
- Calculate (r−s)2=(x+4)2 and r+2s=5x−4.
- Equate with (A+Bx)(x−A)2 to find A=−4 and B=5.