Solveeit Logo

Question

Question: If $\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix} = (A + Bx)(x - A)^...

If x42x2x2xx42x2x2xx4=(A+Bx)(xA)2\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix} = (A + Bx)(x - A)^2, then the ordered pair (A, B) is equal to

Answer

(-4, 5)

Explanation

Solution

Solution:

Given the matrix

x42x2x2xx42x2x2xx4,\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix},

we recognize it has the form with diagonal entries r=x4r = x-4 and off-diagonals s=2xs = 2x. A standard formula for such a matrix is:

det=(rs)2(r+2s).\det = (r-s)^2 \cdot (r+2s).
  1. First, compute rsr - s:

    rs=(x4)2x=x4,r-s = (x-4) - 2x = -x-4,

    so

    (rs)2=(x4)2=(x+4)2.(r-s)^2 = (-x-4)^2 = (x+4)^2.
  2. Next, compute r+2sr+2s:

    r+2s=(x4)+2(2x)=x4+4x=5x4.r+2s = (x-4) + 2(2x) = x-4+4x = 5x-4.

Thus, the determinant equals:

(x+4)2(5x4).(x+4)^2 (5x-4).

We are given that

det=(A+Bx)(xA)2.\det = (A + Bx)(x-A)^2.

By comparing, we identify:

  • (xA)2=(x+4)2(x-A)^2 = (x+4)^2  ⟹  A=4A = -4,
  • A+Bx=5x4A+Bx = 5x-4  ⟹  substituting A=4A = -4 gives 4+Bx=5x4-4 + Bx = 5x - 4, so B=5B = 5.

Answer: The ordered pair (A,B)=(4,5)(A, B) = (-4, 5).


Core Explanation:

  • Use the formula for determinants of matrices with rr on diagonal and ss off-diagonals.
  • Calculate (rs)2=(x+4)2(r-s)^2 = (x+4)^2 and r+2s=5x4r+2s = 5x-4.
  • Equate with (A+Bx)(xA)2(A+Bx)(x-A)^2 to find A=4A = -4 and B=5B = 5.