Question
Question: If $\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix}$ = $...
If
a2a2+ababbcb2b2+bcac+c2acc2
= manbncn, then m + n =

4
6
8
7
6
Solution
The given determinant is
D=a2a2+ababbcb2b2+bcac+c2acc2
We can take out common factors from the columns. Take out a from the first column, b from the second column, and c from the third column.
D=abcaa+bbcbb+ca+cac
Let D′=aa+bbcbb+ca+cac.
We can simplify this determinant using row or column operations. Apply the column operation C3→C3−C1−C2.
D′=aa+bbcbb+c(a+c)−a−ca−(a+b)−bc−b−(b+c)=aa+bbcbb+c0−2b−2b
Now, expand the determinant D′ along the first row:
D′=abb+c−2b−2b−ca+bb−2b−2b+0a+bbbb+c
D′=a[b(−2b)−(−2b)(b+c)]−c[(a+b)(−2b)−(−2b)b]
D′=a[−2b2+2b(b+c)]−c[−2b(a+b)+2b2]
D′=a[−2b2+2b2+2bc]−c[−2ab−2b2+2b2]
D′=a[2bc]−c[−2ab]
D′=2abc+2abc=4abc
Now substitute the value of D′ back into the expression for D:
D=abc⋅D′=abc⋅(4abc)=4a2b2c2.
The problem states that the determinant is equal to manbncn.
Comparing 4a2b2c2 with manbncn, we can identify the values of m and n.
m=4 and n=2.
We are asked to find the value of m+n.
m+n=4+2=6.