Solveeit Logo

Question

Question: If $\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix}$ = $...

If

a2bcac+c2a2+abb2acabb2+bcc2\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix}

= manbncnma^nb^nc^n, then m + n =

A

4

B

6

C

8

D

7

Answer

6

Explanation

Solution

The given determinant is

D=a2bcac+c2a2+abb2acabb2+bcc2D = \begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix}

We can take out common factors from the columns. Take out aa from the first column, bb from the second column, and cc from the third column.

D=abcaca+ca+bbabb+ccD = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b & b+c & c \end{vmatrix}

Let D=aca+ca+bbabb+ccD' = \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b & b+c & c \end{vmatrix}.

We can simplify this determinant using row or column operations. Apply the column operation C3C3C1C2C_3 \to C_3 - C_1 - C_2.

D=ac(a+c)aca+bba(a+b)bbb+ccb(b+c)=ac0a+bb2bbb+c2bD' = \begin{vmatrix} a & c & (a+c) - a - c \\ a+b & b & a - (a+b) - b \\ b & b+c & c - b - (b+c) \end{vmatrix} = \begin{vmatrix} a & c & 0 \\ a+b & b & -2b \\ b & b+c & -2b \end{vmatrix}

Now, expand the determinant DD' along the first row:

D=ab2bb+c2bca+b2bb2b+0a+bbbb+cD' = a \begin{vmatrix} b & -2b \\ b+c & -2b \end{vmatrix} - c \begin{vmatrix} a+b & -2b \\ b & -2b \end{vmatrix} + 0 \begin{vmatrix} a+b & b \\ b & b+c \end{vmatrix}

D=a[b(2b)(2b)(b+c)]c[(a+b)(2b)(2b)b]D' = a [b(-2b) - (-2b)(b+c)] - c [(a+b)(-2b) - (-2b)b]

D=a[2b2+2b(b+c)]c[2b(a+b)+2b2]D' = a [-2b^2 + 2b(b+c)] - c [-2b(a+b) + 2b^2]

D=a[2b2+2b2+2bc]c[2ab2b2+2b2]D' = a [-2b^2 + 2b^2 + 2bc] - c [-2ab - 2b^2 + 2b^2]

D=a[2bc]c[2ab]D' = a [2bc] - c [-2ab]

D=2abc+2abc=4abcD' = 2abc + 2abc = 4abc

Now substitute the value of DD' back into the expression for DD:

D=abcD=abc(4abc)=4a2b2c2D = abc \cdot D' = abc \cdot (4abc) = 4a^2b^2c^2.

The problem states that the determinant is equal to manbncnma^nb^nc^n.

Comparing 4a2b2c24a^2b^2c^2 with manbncnma^nb^nc^n, we can identify the values of mm and nn.

m=4m = 4 and n=2n = 2.

We are asked to find the value of m+nm+n.

m+n=4+2=6m+n = 4+2 = 6.