Question
Question: If $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ = k(a+b+c)($a^2 + b^2 + c^2$-...
If abcbcacab = k(a+b+c)(a2+b2+c2-bc - ca - ab), then k =

-1
Solution
The given determinant is: D=abcbcacab
Step 1: Evaluate the determinant We expand the determinant along the first row: D=a(c⋅b−a⋅a)−b(b⋅b−c⋅a)+c(b⋅a−c⋅c) D=a(bc−a2)−b(b2−ac)+c(ab−c2) D=abc−a3−b3+abc+abc−c3 D=3abc−a3−b3−c3
We can rewrite this as: D=−(a3+b3+c3−3abc)
Step 2: Apply the algebraic identity We know the algebraic identity for the sum of cubes: a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Substitute this identity into the expression for D: D=−(a+b+c)(a2+b2+c2−ab−bc−ca)
Step 3: Compare with the given expression The problem states that: D=k(a+b+c)(a2+b2+c2−bc−ca−ab)
Comparing our derived expression for D with the given form: −(a+b+c)(a2+b2+c2−ab−bc−ca)=k(a+b+c)(a2+b2+c2−bc−ca−ab)
By direct comparison of the terms, we can see that: k=−1
The value of k is -1.
The final answer is −1
Explanation of the solution: The determinant abcbcacab evaluates to 3abc−(a3+b3+c3). Using the algebraic identity a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca), we can write the determinant as −(a+b+c)(a2+b2+c2−ab−bc−ca). Comparing this with the given expression k(a+b+c)(a2+b2+c2−bc−ca−ab), we find that $k = -1.