Solveeit Logo

Question

Question: If $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ = k(a+b+c)($a^2 + b^2 + c^2$-...

If abcbcacab\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = k(a+b+c)(a2+b2+c2a^2 + b^2 + c^2-bc - ca - ab), then k =

Answer

-1

Explanation

Solution

The given determinant is: D=abcbcacabD = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}

Step 1: Evaluate the determinant We expand the determinant along the first row: D=a(cbaa)b(bbca)+c(bacc)D = a(c \cdot b - a \cdot a) - b(b \cdot b - c \cdot a) + c(b \cdot a - c \cdot c) D=a(bca2)b(b2ac)+c(abc2)D = a(bc - a^2) - b(b^2 - ac) + c(ab - c^2) D=abca3b3+abc+abcc3D = abc - a^3 - b^3 + abc + abc - c^3 D=3abca3b3c3D = 3abc - a^3 - b^3 - c^3

We can rewrite this as: D=(a3+b3+c33abc)D = -(a^3 + b^3 + c^3 - 3abc)

Step 2: Apply the algebraic identity We know the algebraic identity for the sum of cubes: a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)

Substitute this identity into the expression for D: D=(a+b+c)(a2+b2+c2abbcca)D = -(a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)

Step 3: Compare with the given expression The problem states that: D=k(a+b+c)(a2+b2+c2bccaab)D = k(a+b+c)(a^2 + b^2 + c^2 - bc - ca - ab)

Comparing our derived expression for D with the given form: (a+b+c)(a2+b2+c2abbcca)=k(a+b+c)(a2+b2+c2bccaab)-(a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca) = k(a+b+c)(a^2 + b^2 + c^2 - bc - ca - ab)

By direct comparison of the terms, we can see that: k=1k = -1

The value of k is -1.

The final answer is 1\boxed{-1}

Explanation of the solution: The determinant abcbcacab\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} evaluates to 3abc(a3+b3+c3)3abc - (a^3 + b^3 + c^3). Using the algebraic identity a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca), we can write the determinant as (a+b+c)(a2+b2+c2abbcca)-(a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca). Comparing this with the given expression k(a+b+c)(a2+b2+c2bccaab)k(a+b+c)(a^2 + b^2 + c^2 - bc - ca - ab), we find that $k = -1.