Question
Mathematics Question on Determinants
If y+z y−z z−yx−zz+xz−xx−yy−xx+y=kxyz then the value of k is :
A
2
B
4
C
6
D
8
Answer
8
Explanation
Solution
Let y+z y−z z−yx−zz+xz−xx−yy−xx+y Applying C1→C1+C2+C3 =2x 2y 2zx−zz+xz−xx−yy−xx+y Applying R1→R2+R1,R3→R3+R1 =2x 2(x+y) 2(z+z)x−z2x0x−y02x On expanding we get =2x(4x2)−(x−z)[4x(x+y)]+(x−y)[−4x(x+z)] =8x2−(x−z)(4x2+4xy)−(x−y)(4x2+4xz) =8x3−4x3−4x2y+4zx2+4xyz−4x3−4x2z+4yx2+4xyz =8xyz Given : A=kxyz ⇒ 8xyz=kxyz ⇒ k=8