Solveeit Logo

Question

Mathematics Question on Determinants

If y+zxzxy yzz+xyx zyzxx+y=kxyz\begin{vmatrix}y+z&x-z&x-y\\\ y-z &z+x&y-x\\\ z-y &z-x&x+y\end{vmatrix}= kxyz then the value of k is :

A

2

B

4

C

6

D

8

Answer

8

Explanation

Solution

Let y+zxzxy yzz+xyx zyzxx+y\begin{vmatrix}y+z&x-z&x-y\\\ y-z &z+x&y-x\\\ z-y &z-x&x+y\end{vmatrix} Applying C1C1+C2+C3C_{1} \to C_{1} + C_{2} +C_{3} =2xxzxy 2yz+xyx 2zzxx+y = \begin{vmatrix}2x&x-z&x-y\\\ 2y &z+x&y-x\\\ 2z &z-x&x+y\end{vmatrix} Applying R1R2+R1,R3R3+R1 R_{1} \to R_{2}+R_{1}, R_{3} \to R_{3} + R_{1} =2xxzxy 2(x+y)2x0 2(z+z)02x= \begin{vmatrix}2x&x-z&x-y\\\ 2\left(x+y\right) &2x&0\\\ 2\left(z+z\right)&0&2x\end{vmatrix} On expanding we get =2x(4x2)(xz)[4x(x+y)]+(xy)[4x(x+z)]= 2x (4x^2) - (x - z) [4x (x + y)] + (x - y) [- 4x (x + z)] =8x2(xz)(4x2+4xy)(xy)(4x2+4xz)= 8x^2 - (x - z) (4x^2 + 4xy) - (x - y) (4x^2 + 4xz) =8x34x34x2y+4zx2+4xyz4x34x2z+4yx2+4xyz= 8x^3 - 4x^3 - 4x^2y + 4^zx2 + 4xyz - 4x^3 - 4x^2z + 4yx^2 + 4xyz =8xyz= 8xyz Given : A=kxyz  8xyz=kxyz  k=8 A = kxyz \ \Rightarrow \ 8xyz = kxyz \ \Rightarrow \ k = 8