Solveeit Logo

Question

Mathematics Question on Determinants

If x2+xx+1x2 2x2+3x13x3x3 x2+2x+32x12x1=ax12,\begin{vmatrix}x^{2}+x&x+1&x-2\\\ 2x^{2}+3x-1&3x&3x-3\\\ x^{2}+2x+3&2x-1&2x-1\end{vmatrix}=ax-12, then 'a' is equal to :

A

12

B

24

C

-12

D

-24

Answer

24

Explanation

Solution

Δ=x2+xx+1x2 2x2+3x13x3x3 x2+2x+32x12x1=ax12\Delta=\begin{vmatrix}x^{2}+x & x+1 & x-2 \\\ 2 x^{2}+3 x-1 & 3 x & 3 x-3 \\\ x^{2}+2 x+3 & 2 x-1 & 2 x-1\end{vmatrix}=a x-12
Operating R2R2(R1+R3)R_{2} \rightarrow R_{2}-\left(R_{1}+R_{3}\right) gives,
Δ=x2+xx+1x2 400 x2+2x+32x12x1\Delta= \begin{vmatrix}x^{2}+x & x+1 & x-2 \\\ -4 & 0 & 0 \\\ x^{2}+2 x+3 & 2 x-1 & 2 x-1\end{vmatrix}
Δ=(4)x+1x2 2x12x1=4(2x1)\Rightarrow \Delta=-(-4)\begin{vmatrix}x+1 & x-2 \\\ 2 x-1 & 2 x-1\end{vmatrix}=4(2 x-1)
x+1x2 11=4(2x1)(x+1x+2)\begin{vmatrix}x+1 & x-2 \\\ 1 & 1\end{vmatrix}=4(2 x-1)(x+1-x+2)
=4(2x1)(3)=24x12=ax12=4(2 x-1)(3)=24 x-12=a x-12 (given) a=24\Rightarrow a=24