Question
Mathematics Question on Determinants
If x2+x 2x2+3x−1 x2+2x+3x+13x2x−1x−23x−32x−1=ax−12, then 'a' is equal to :
A
12
B
24
C
-12
D
-24
Answer
24
Explanation
Solution
Δ=x2+x 2x2+3x−1 x2+2x+3x+13x2x−1x−23x−32x−1=ax−12
Operating R2→R2−(R1+R3) gives,
Δ=x2+x −4 x2+2x+3x+102x−1x−202x−1
⇒Δ=−(−4)x+1 2x−1x−22x−1=4(2x−1)
x+1 1x−21=4(2x−1)(x+1−x+2)
=4(2x−1)(3)=24x−12=ax−12 (given) ⇒a=24