Solveeit Logo

Question

Mathematics Question on Transpose of a Matrix

If a+b+2ca;b; c2a+b+cb; ca;a;+2b+c=2\begin{vmatrix}a+b+2c&a;&b;\\\ c&2a+b+c&b;\\\ c&a;&a;+2b+c\end{vmatrix} = 2 , then a3+b3+c33abca^3 + b^3 + c^3 - 3abc =

A

13ab3bc3ca1 - 3ab - 3bc - 3ca

B

00

C

12ab2bc2ca1 - 2ab - 2bc - 2ca

D

11

Answer

13ab3bc3ca1 - 3ab - 3bc - 3ca

Explanation

Solution

a+b+2cab c2a+b+cb caa+2b+c=2\begin{vmatrix}a+b+2 c & a & b \\\ c & 2 a+b+c & b \\\ c & a & a+2 b+c\end{vmatrix} =2
2(a+b+c)1ab 1b+c+2ab 1ac+a+2b=2\Rightarrow 2(a+b+c)\begin{vmatrix} 1 & a & b \\\ 1 & b+c+2 a & b \\\ 1 & a & c+a+2 b\end{vmatrix}=2
[ Applying C1C1+C2+C3C_{1} \rightarrow C_{1}+C_{2}+C_{3} and
taking 2(a+b+c)2( a + b + c) common from C1]C_{1} ]
2(a+b+c)1ab 0b+c+a0 00c+a+b=2\Rightarrow 2(a+b+c) \begin{vmatrix}1 & a & b \\\ 0 & b+c+a & 0 \\\ 0 & 0 & c+a+b\end{vmatrix} =2
[ Applying R2R2R1 R_{2} \rightarrow R_{2}-R_{1} and R3R3R1]R_{3} \rightarrow R_{3}-R_{1}]
2(a+b+c)3=2\Rightarrow 2(a+b+c)^{3}=2 [ expanding along C1]C_{1}]
(a+b+c)3=1\Rightarrow (a+b+c)^{3}=1
a+b+c=1\Rightarrow a+b+c=1
Now, a3+b3+c33abca^{3}+b^{3}+c^{3}-3 a b c
=(a+b+c)(a2+b2+c2abbcca)=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)
=1[a2+b2+c2abbcca]= 1 \cdot\left[a^{2}+b^{2}+c^{2}-a b-b c-c a\right]
=(a+b+c)22ab2bc2caabbcca= (a+b+c)^{2}-2 a b-2 b c-2 c a-a b-b c-c a
=12ab2bc2caabbcca= 1-2 a b-2 b c-2 c a-a b-b c-c a
=13ab3bc3ca= 1-3 a b-3 b c-3 c a