Question
Mathematics Question on Transpose of a Matrix
If a+b+2c c ca;2a+b+ca;b;b;a;+2b+c=2, then a3+b3+c3−3abc =
A
1−3ab−3bc−3ca
B
0
C
1−2ab−2bc−2ca
D
1
Answer
1−3ab−3bc−3ca
Explanation
Solution
a+b+2c c ca2a+b+cabba+2b+c=2
⇒2(a+b+c)1 1 1ab+c+2aabbc+a+2b=2
[ Applying C1→C1+C2+C3 and
taking 2(a+b+c) common from C1]
⇒2(a+b+c)1 0 0ab+c+a0b0c+a+b=2
[ Applying R2→R2−R1 and R3→R3−R1]
⇒2(a+b+c)3=2 [ expanding along C1]
⇒(a+b+c)3=1
⇒a+b+c=1
Now, a3+b3+c3−3abc
=(a+b+c)(a2+b2+c2−ab−bc−ca)
=1⋅[a2+b2+c2−ab−bc−ca]
=(a+b+c)2−2ab−2bc−2ca−ab−bc−ca
=1−2ab−2bc−2ca−ab−bc−ca
=1−3ab−3bc−3ca