Solveeit Logo

Question

Mathematics Question on Vector Algebra

If aa21+a3 bb21+b3 cc21+c3=0\begin{vmatrix}a&a^{2}&1+a^{3}\\\ b&b^{2}&1+b^{3}\\\ c&c^{2}&1+c^{3}\end{vmatrix}=0 and vectors (1,a,a2)(1,b,b2)(1, a, a^2) (1, b, b^2) and (1,c,c2)(1, c, c^2) are non-coplanar, then the product abc equals

A

22

B

1-1

C

11

D

00

Answer

1-1

Explanation

Solution

aa21 bb21 cc21+1aa2 1bb2 1cc2=0\begin{vmatrix}a&a^{2}&1\\\ b&b^{2}&1\\\ c&c^{2}&1\end{vmatrix}+\begin{vmatrix}1&a&a^{2}\\\ 1&b&b^{2}\\\ 1&c&c^{2}\end{vmatrix}=0 (1+abc)aa21 bb21 cc21=0\left(1+abc\right)\begin{vmatrix}a&a^{2}&1\\\ b&b^{2}&1\\\ c&c^{2}&1\end{vmatrix}=0 abc=1.\Rightarrow abc=-1. Hence, (B) is the correct answer