Solveeit Logo

Question

Mathematics Question on Determinants

If a1b1c1\[0.3em]a2b2c2\[0.3em]a3b3c3=3,\begin{vmatrix} a_1 &b_1 &c_1 \\\[0.3em] a_2 &b_2 &c_2 \\\[0.3em] a_ 3&b_3 &c_3 \end{vmatrix}=\,\,\,\,3,\, then 3a19b13c1\[0.3em]a23b2c2\[0.3em]3a39b33c3= \begin{vmatrix} 3a_1 &9b_1 &3c_1 \\\[0.3em] a_2 &3b_2 &c_2 \\\[0.3em] 3a_ 3&9b_3 &3c_3 \end{vmatrix}=,

A

51

B

27

C

81

D

91

Answer

81

Explanation

Solution

3a19b13c1\[0.3em]a23b2c2\[0.3em]3a39b33c3=9a1b1c1\[0.3em]a2b2c2\[0.3em]a3b3c3 \begin{vmatrix} 3a_1 &9b_1 &3c_1 \\\[0.3em] a_2 &3b_2 &c_2 \\\[0.3em] 3a_ 3&9b_3 &3c_3 \end{vmatrix}= 9 \begin{vmatrix} a_1 &b_1 &c_1 \\\[0.3em] a_2 &b_2 &c_2 \\\[0.3em] a_ 3&b_3 &c_3 \end{vmatrix}
= 9×3a1b1c1\[0.3em]a2b2c2\[0.3em]a3b3c3=27×3=81 9 \times 3 \begin{vmatrix} a_1 &b_1 &c_1 \\\[0.3em] a_2 &b_2 &c_2 \\\[0.3em] a_ 3&b_3 &c_3 \end{vmatrix} = 27 \times 3 = 81