Solveeit Logo

Question

Mathematics Question on Determinants

If 3i9i1 29i1 109i=x+iy\begin{vmatrix}3i&-9i&1\\\ 2&9i&-1\\\ 10&9&i\end{vmatrix} = x + iy , then

A

x = 1, y = 1

B

x = 0, y = 1

C

x = 1, y = 0

D

x = 0, y = 0

Answer

x = 0, y = 0

Explanation

Solution

We have,
3i9i1 29i1 109i=x+iy\begin{vmatrix}3 i & -9 i & 1 \\\ 2 & 9 i & -1 \\\ 10 & 9 & i\end{vmatrix}=x +i y
3i+200 29i1 109i=x+iy\Rightarrow\begin{vmatrix}3 i+2 & 0 & 0 \\\ 2 & 9 i & -1 \\\ 10 & 9 & i\end{vmatrix}=x +i y
[R1R1+R2]\left[\because R_{1} \rightarrow R_{1}+R_{2}\right]
(3i+2)[9i2+9]=x+iy\Rightarrow (3 i+2)\left[9 i^{2}+9\right]=x +i y
(3i+2)(9+9)=x+iy[i2=1]\Rightarrow (3 i+2)(-9+9)=x +i y\, \left[\because i^{2}=-1\right]
0=x+iy\Rightarrow 0=x +i y
x=0,y=0\Rightarrow x=0, y=0