Question
Mathematics Question on Determinants
If 3i 2 10−9i9i91−1i=x+iy, then
A
x = 1, y = 1
B
x = 0, y = 1
C
x = 1, y = 0
D
x = 0, y = 0
Answer
x = 0, y = 0
Explanation
Solution
We have,
3i 2 10−9i9i91−1i=x+iy
⇒3i+2 2 1009i90−1i=x+iy
[∵R1→R1+R2]
⇒(3i+2)[9i2+9]=x+iy
⇒(3i+2)(−9+9)=x+iy[∵i2=−1]
⇒0=x+iy
⇒x=0,y=0