Solveeit Logo

Question

Mathematics Question on Determinants

If 2ax1y1 2bx2y2 2cx3y3 \begin{vmatrix} {2a}&{x_1} &{y_1}\\\ {2b}&{x_2}& {y_2} \\\ {2c}&{x_3}&{y_3}\\\ \end{vmatrix} == abc20\frac {abc}{2} \neq 0, then the area of the triangle whose vertices are (x1a,y1a)(\frac {x_1}{a},\frac {y_1}{a}) (x2b,y2b)(\frac {x_2}{b},\frac {y_2}{b}) (x3c,y3c)(\frac {x_3}{c},\frac {y_3}{c}) is

A

14abc\frac {1}{4}abc

B

18abc\frac {1}{8}abc

C

14\frac {1}{4}

D

18\frac {1}{8}

Answer

18\frac {1}{8}

Explanation

Solution

Area of triangle whose vertices are
(x1a,y1a),(x2b,y2b),(x3c,y3c)\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right), \left(\frac{x_{3}}{c}, \frac{y_{3}}{c}\right)is
Δ=12x1ay1a1 x2by2b1 x3cy3c1\Delta=\frac{1}{2}\begin{vmatrix}\frac{x_{1}}{a}&\frac{y_{1}}{a}&1\\\ \frac{x_{2}}{b}&\frac{y_{2}}{b}&1\\\ \frac{x_{3}}{c}&\frac{y_{3}}{c}&1\end{vmatrix}
On multiplying 1,R2_1, R_2 and R3R_3 by a.b.c respectively, we get
Δ=12abcx1y1a x2y2b x3y3c\Delta=\frac{1}{2\,abc}\begin{vmatrix}x_{1}&y_{1}&a\\\ x_{2}&y_{2}&b\\\ x_{3}&y_{3}&c\end{vmatrix}
On multiplying C3C_3 by 2 we get
Δ=14abcx1y12a x2y22b x3y32c\Delta=\frac{1}{4\,abc}\begin{vmatrix}x_{1}&y_{1}&2a\\\ x_{2}&y_{2}&2b\\\ x_{3}&y_{3}&2c\end{vmatrix}
On applying C1C_1 \leftrightarrow C3C_3 , by 2 we get
Δ=14abc2ay1x1 2by2x2 2cy3x3\Delta=-\frac{1}{4\,abc}\begin{vmatrix}2a&y_{1}&x_{1}\\\ 2b&y_{2}&x_{2}\\\ 2c&y_{3}&x_{3}\end{vmatrix}
On applying C2C_2 \leftrightarrow C3C_3 , we get
Δ=14abc2ax1y1 2bx2y2 2cx3y3\Delta=-\frac{1}{4\,abc}\begin{vmatrix}2a&x_{1}&y_{1}\\\ 2b&x_{2}&y_{2}\\\ 2c&x_{3}&y_{3}\end{vmatrix}
=14abc.abc2[2ax1y1 2bx2y2 2cx3y3=abc2]=18=\frac{1}{4\,abc}. \frac{abc}{2}\left[\because\begin{vmatrix}2a&x_{1}&y_{1}\\\ 2b&x_{2}&y_{2}\\\ 2c&x_{3}&y_{3}\end{vmatrix}=\frac{abc}{2}\right]=\frac{1}{8}