Question
Mathematics Question on Determinants
If 1+sin2 sin2 sin2θ cos2θ1+cos2cos2θ4sin2θ4sin2θ4sin2θ−1=0 and $ 0< \theta
A
21
B
23
C
0
D
2−1
Answer
21
Explanation
Solution
Given, 1+sin2θ sin2θ sin2θcos2θ1+cos2θcos2θ4sin2θ4sin2θ4sin2θ−1=0
Applying C1→C1+C2
⇒2 2 1cos2θ1+cos2θcos2θ4sin2θ4sin2θ4sin2θ−1=0
Applying R2→R2−R1,R3→2R3−R1
⇒2 0 0cos2θ1cos2θ4sin2θ04sin2θ−2=0
⇒2(4sin2θ−2−0)=0
⇒sin2θ=21
Now, cos4θ=1−2sin22θ
=1−2(21)2=21