Solveeit Logo

Question

Mathematics Question on Matrices

If [exey eyex]=[11 11]\begin{bmatrix}e^{x}&e^{y}\\\ e^{y}&e^{x}\end{bmatrix} = \begin{bmatrix}1&1\\\ 1&1\end{bmatrix}, then the values of xx and yy are respectively:

A

-1,-1

B

0, 0

C

0, 1

D

1, 0

Answer

0, 0

Explanation

Solution

Given, [exey eyex]=[11 11]\begin{bmatrix}e^{x} & e^{y} \\\ e^{y} & e^{x}\end{bmatrix}=\begin{bmatrix}1 & 1 \\\ 1 & 1\end{bmatrix}
[exey eyex]=[e0e0 e0e0](e0=1)\Rightarrow \begin{bmatrix}e^{x} & e^{y} \\\ e^{y} & e^{x}\end{bmatrix}=\begin{bmatrix}e^{0} & e^{0} \\\ e^{0} & e^{0}\end{bmatrix} (\because e^{0}=1)
On equating the corresponding elements,
ex=e0e^{x}=e^{0} and ey=e0e^{y}=e^{0}
x=0\Rightarrow x=0 and y=0y=0

So, the correct option is (B): 0, 0