Solveeit Logo

Question

Mathematics Question on Matrices

If [αβ γα]\begin{bmatrix}\alpha&\beta\\\ \gamma&-\alpha\end{bmatrix} is to be square root of the two rowed unit matrix, then α\alpha , β\beta and γ\gamma should statisfy the relation

A

1+α2+βy=01 + \alpha^2 + \beta{y} = 0

B

1α2βy=01 - \alpha^2 - \beta{y} = 0

C

1α2+βy=01 - \alpha^2 + \beta{y} = 0

D

1+α2βy=01 + \alpha^2 - \beta{y} = 0

Answer

1α2βy=01 - \alpha^2 - \beta{y} = 0

Explanation

Solution

We have,
[αβ γα]=[10 01]1/2\begin{bmatrix}\alpha&\beta\\\ \gamma&-\alpha\end{bmatrix} = \begin{bmatrix}1&0\\\ 0&1\end{bmatrix}^{1/2}
[αβ γα]2=[10 01]\Rightarrow \begin{bmatrix}\alpha&\beta\\\ \gamma&-\alpha\end{bmatrix}^{2} = \begin{bmatrix}1&0\\\ 0&1\end{bmatrix}
[Taking square both sides ]
[α2+βγαβαβ αγαγβγ+α2]=[10 01]\Rightarrow \begin{bmatrix}\alpha^{2}+\beta\gamma&\alpha\beta -\alpha\beta\\\ \alpha\gamma-\alpha\gamma&\beta\gamma+\alpha^{2}\end{bmatrix} = \begin{bmatrix}1&0\\\ 0&1\end{bmatrix} [α2+βγ0 0α2+βγ]=[10 01]\Rightarrow\begin{bmatrix}\alpha^{2}+\beta\gamma&0\\\ 0&\alpha^{2}+\beta\gamma\end{bmatrix} = \begin{bmatrix}1&0\\\ 0&1\end{bmatrix}
On comparing both sides, we get
α2+βγ=1\alpha^2 + \beta \gamma = 1
1α2βγ=0\Rightarrow 1 - \alpha^2 - \beta \gamma = 0