Solveeit Logo

Question

Mathematics Question on Matrices

If[5x+87\y+310x+12]\begin{bmatrix}5x+8 & 7 \\\y+3 & 10x+12 \end{bmatrix} =[23y+1\50]\begin{bmatrix}2 & 3y+1 \\\5 & 0 \end{bmatrix} then the value of 5x + 3y is equal to:

A

-1

B

8

C

2

D

0

Answer

0

Explanation

Solution

Equate corresponding elements of the matrices:5x+8=2,10x+12=0,y+3=5,3y+1=75x + 8 = 2, \quad 10x + 12 = 0, \quad y + 3 = 5, \quad 3y + 1 = 7

Solve 5x+8=25x + 8 = 2:

5x=6    x=655x = -6 \implies x = -\frac{6}{5}

Solve 3y+1=73y + 1 = 7:

3y=6    y=23y = 6 \implies y = 2

Calculate 5x+3y5x + 3y:

5(65)+32=6+6=05 \left( -\frac{6}{5} \right) + 3 \cdot 2 = -6 + 6 = 0