Solveeit Logo

Question

Mathematics Question on Transpose of a Matrix

If [1x1][132 251 1532][1 2 x]=0\begin{bmatrix}1&x&1\end{bmatrix} \begin{bmatrix}1&3&2\\\ 2&5&1\\\ 15&3&2\end{bmatrix}\begin{bmatrix}1\\\ 2\\\ x\end{bmatrix} = 0 , then x can be

A

-2

B

2

C

14

D

-14

Answer

-14

Explanation

Solution

Given that, [1x1][132 251 1532][1 2 x]=0\begin{bmatrix}1 & x & 1\end{bmatrix}\begin{bmatrix}1 & 3 & 2 \\\ 2 & 5 & 1 \\\ 15 & 3 & 2\end{bmatrix}\begin{bmatrix}1 \\\ 2 \\\ x\end{bmatrix}=0
[1+2x+15 3+5x+3 2+x+2][1 2 x]=0\Rightarrow \begin{bmatrix}1+2 x+15 \\\ 3+5 x+3 \\\ 2+x+2\end{bmatrix}\begin{bmatrix}1 \\\ 2 \\\ x\end{bmatrix}=0
[2x+16 5x+6 x+4][1 2 x]=0\Rightarrow \begin{bmatrix}2 x+16 \\\ 5 x+6 \\\ x+4\end{bmatrix}\begin{bmatrix}1 \\\ 2 \\\ x\end{bmatrix}=0
2x+16+2(5x+6)+x(x+4)=0\Rightarrow 2 x+16+2(5 x+6)+x(x+4)=0
2x+16+10x+12+x2+4x=0\Rightarrow \, 2 x+16+10 x+12+x^{2}+4 x=0
x2+16x+28=0\Rightarrow \, x^{2}+16 x+28=0
x2+2x+14x+28=0\Rightarrow \, x^{2}+2 x+14 x+28=0
x(x+2)+14(x+2)=0\Rightarrow \, x(x+2)+14(x+2)=0
(x+2)(x+14)=0\Rightarrow \,(x+2)(x+14)=0
x=2,14\Rightarrow \,x=-2,-14