Question
Mathematics Question on Determinants
If [1 011] . [1 021] . [1 031] ..... [1 1n−11] = [1 0781], then the inverse of [1 0n1] is
A
[1 0−131]
B
[1 1201]
C
[1 0−121]
D
[1 1301]
Answer
[1 0−131]
Explanation
Solution
The correct answer is A:[1\0−131]
Given that;
[1\011][1\021][1\031]......[1\0(n−1)1]=[1\0781]
⇒[1\01+2+3+....+n−11]=[1\0781]
⇒1+2+3+.....(n−1)=78
⇒2n(n−2)=78
⇒n2−2n−156=0
∴n=13,12
Now inverse of [1\0n1] is;
[1\0131]−1=[1\0−131]
[if A=[a\bcd]A−1=ad−ac1d−c−ba]
and [1\0−131] also