Question
Mathematics Question on Integration by Partial Fractions
If ∫031+x2+(1+x2)315x3dx=α2+β3,where α,β are integers, then α+β is equal to
Answer
Put
x=tanθ⇒dx=sec2θ dθ
⇒I=∫03π1+tan2θ+sec6θ15tan3θ.sec2θ dθ
⇒I=∫03πsecθ1+secθ15tan2θsec2θ dθ
⇒I=∫03π(1+secθ)15(sec2θ−1)secθtanθ dθ
Now put 1 + secθ = t 2
⇒sec θ tan θ dθ=2tdt
⇒I=∫23t15((t2−1)2−1)2t dt
⇒I=30∫23(t4−2t2+1−1)dt
⇒I=30∫23(t4−2t2+1−1)dt
⇒I=30(5t5−32t3)23
=30[(593−23)−(542−342)]
=(543−603)−(242−402)
=162−63
∴α=16 and β=–6 α+β=10.