Solveeit Logo

Question

Question: If α,β,γ be the direction angles of a vector and \(\cos \alpha = \frac { 14 } { 15 }\), \(\cos \beta...

If α,β,γ be the direction angles of a vector and cosα=1415\cos \alpha = \frac { 14 } { 15 }, cosβ=13\cos \beta = \frac { 1 } { 3 } then cosγ\cos \gamma=

A

±215\pm \frac { 2 } { 15 }

B

15\frac { 1 } { 5 }

C

±115\pm \frac { 1 } { 15 }

D

None of these

Answer

±215\pm \frac { 2 } { 15 }

Explanation

Solution

cos2α+cos2β+cos2γ=1\cos ^ { 2 } \alpha + \cos ^ { 2 } \beta + \cos ^ { 2 } \gamma = 1

cosγ=1(1415)2(13)2\Rightarrow \cos \gamma = \sqrt { 1 - \left( \frac { 14 } { 15 } \right) ^ { 2 } - \left( \frac { 1 } { 3 } \right) ^ { 2 } } =89(196225)=±215= \sqrt { \frac { 8 } { 9 } - \left( \frac { 196 } { 225 } \right) } = \pm \frac { 2 } { 15 } .