Solveeit Logo

Question

Question: If θ be the angle between the unit vectors **a** and **b,** then \(\cos\frac{\theta}{2} =\)...

If θ be the angle between the unit vectors a and b, then cosθ2=\cos\frac{\theta}{2} =

A

12ab\frac{1}{2}|\mathbf{a} - \mathbf{b}|

B

12a+b\frac{1}{2}|\mathbf{a} + \mathbf{b}|

C

aba+b\frac{|\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}|}

D

a+bab\frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|}

Answer

12a+b\frac{1}{2}|\mathbf{a} + \mathbf{b}|

Explanation

Solution

(a+b).(a+b)=a2+b2+2a.b(\mathbf{a} + \mathbf{b}).(\mathbf{a} + \mathbf{b}) = |\mathbf{a}|^{2} + |\mathbf{b}|^{2} + 2\mathbf{a}.\mathbf{b}

or a+b2=2.2cos2θ2cosθ2=12a+b.|\mathbf{a} + \mathbf{b}|^{2} = 2.2\cos^{2}\frac{\theta}{2} \Rightarrow \cos\frac{\theta}{2} = \frac{1}{2}|\mathbf{a} + \mathbf{b}|.