Solveeit Logo

Question

Question: If ω be a complex cube root of unity, then \(\left| \begin{matrix} 1 & \omega & - \omega^{2}/2 \\ 1...

If ω be a complex cube root of unity, then

1ωω2/2111110\left| \begin{matrix} 1 & \omega & - \omega^{2}/2 \\ 1 & 1 & 1 \\ 1 & - 1 & 0 \end{matrix} \right|is equal to

A

0

B

1

C

ω

D

ω2

Answer

0

Explanation

Solution

1ωω2/2111110\left| \begin{matrix} 1 & \omega & - \omega^{2}/2 \\ 1 & 1 & 1 \\ 1 & - 1 & 0 \end{matrix} \right|= –121ωω2112110\frac{1}{2}\left| \begin{matrix} 1 & \omega & \omega^{2} \\ 1 & 1 & - 2 \\ 1 & - 1 & 0 \end{matrix} \right|

=121+ω+ω2ωω2012010\frac{1}{2}\left| \begin{matrix} 1 + \omega + \omega^{2} & \omega & \omega^{2} \\ 0 & 1 & - 2 \\ 0 & - 1 & 0 \end{matrix} \right| = –120ωω2012010\frac{1}{2}\left| \begin{matrix} 0 & \omega & \omega^{2} \\ 0 & 1 & - 2 \\ 0 & - 1 & 0 \end{matrix} \right|= 0