Solveeit Logo

Question

Question: If $|\bar{a}|=5$, $|\bar{b}|=3$, $|\bar{c}|=4$ and $\bar{a}$ is perpendicular to $\bar{b}$ and $\bar...

If aˉ=5|\bar{a}|=5, bˉ=3|\bar{b}|=3, cˉ=4|\bar{c}|=4 and aˉ\bar{a} is perpendicular to bˉ\bar{b} and cˉ\bar{c} such that angle between bˉ\bar{b} and cˉ\bar{c} is 5π6\frac{5\pi}{6}, then [aˉ bˉ cˉ]=[\bar{a}\ \bar{b}\ \bar{c}] =

A

25

B

10

C

30

D

20

Answer

30

Explanation

Solution

Since aˉ\bar{a} is perpendicular to both bˉ\bar{b} and cˉ\bar{c}, it is parallel (or anti-parallel) to bˉ×cˉ\bar{b} \times \bar{c}. Thus,

[a b c]=a(b×c)=a  b×c[\vec{a}\ \vec{b}\ \vec{c}] = \vec{a}\cdot (\vec{b}\times\vec{c}) = |\vec{a}|\;|\vec{b}\times\vec{c}|

Now,

b×c=b  csinθ=3×4×sin(5π6)|\vec{b}\times\vec{c}| = |\vec{b}|\;|\vec{c}|\sin\theta = 3\times4\times\sin\left(\frac{5\pi}{6}\right)

Since sin5π6=sinπ6=12\sin\frac{5\pi}{6} = \sin\frac{\pi}{6} = \frac{1}{2},

b×c=3×4×12=6|\vec{b}\times\vec{c}| = 3\times4\times\frac{1}{2} = 6.

Thus,

[a b c]=5×6=30[\vec{a}\ \vec{b}\ \vec{c}] = 5\times6 = 30.