Solveeit Logo

Question

Question: If $|\bar{a}|=3$, $|\bar{b}|=5$ and $|\bar{c}|=7$ and $\bar{a}+\bar{b}+\bar{c}=0$ then the angle bet...

If aˉ=3|\bar{a}|=3, bˉ=5|\bar{b}|=5 and cˉ=7|\bar{c}|=7 and aˉ+bˉ+cˉ=0\bar{a}+\bar{b}+\bar{c}=0 then the angle between aˉ\bar{a} and bˉ\bar{b} is

aˉ+bˉ=cˉ\bar{a}+\bar{b}=-\bar{c} squaring on both sides

A

π6\frac{\pi}{6}

B

π2\frac{\pi}{2}

C

π4\frac{\pi}{4}

D

π3\frac{\pi}{3}

Answer

π3\frac{\pi}{3}

Explanation

Solution

Given:

aˉ=3,bˉ=5,cˉ=7,andaˉ+bˉ+cˉ=0.|\bar{a}| = 3, \quad |\bar{b}| = 5, \quad |\bar{c}| = 7, \quad \text{and} \quad \bar{a} + \bar{b} + \bar{c} = 0.

Thus,

aˉ+bˉ=cˉ.\bar{a} + \bar{b} = -\bar{c}.

Taking magnitudes on both sides:

aˉ+bˉ=cˉ=7.|\bar{a} + \bar{b}| = |\bar{c}| = 7.

Using the formula for the magnitude of the sum of two vectors:

aˉ+bˉ2=aˉ2+bˉ2+2aˉbˉcosθ.|\bar{a} + \bar{b}|^2 = |\bar{a}|^2 + |\bar{b}|^2 + 2|\bar{a}||\bar{b}|\cos\theta.

Substitute the given values:

72=32+52+2(3)(5)cosθ,7^2 = 3^2 + 5^2 + 2(3)(5)\cos\theta, 49=9+25+30cosθ,49 = 9 + 25 + 30\cos\theta, 49=34+30cosθ.49 = 34 + 30\cos\theta.

Solve for cosθ\cos\theta:

30cosθ=4934=15,30\cos\theta = 49 - 34 = 15, cosθ=1530=12.\cos\theta = \frac{15}{30} = \frac{1}{2}.

Thus,

θ=arccos(12)=π3.\theta = \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}.