Question
Question: If $|\bar{a}|=3$, $|\bar{b}|=5$ and $|\bar{c}|=7$ and $\bar{a}+\bar{b}+\bar{c}=0$ then the angle bet...
If ∣aˉ∣=3, ∣bˉ∣=5 and ∣cˉ∣=7 and aˉ+bˉ+cˉ=0 then the angle between aˉ and bˉ is
aˉ+bˉ=−cˉ squaring on both sides

A
6π
B
2π
C
4π
D
3π
Answer
3π
Explanation
Solution
Given:
∣aˉ∣=3,∣bˉ∣=5,∣cˉ∣=7,andaˉ+bˉ+cˉ=0.Thus,
aˉ+bˉ=−cˉ.Taking magnitudes on both sides:
∣aˉ+bˉ∣=∣cˉ∣=7.Using the formula for the magnitude of the sum of two vectors:
∣aˉ+bˉ∣2=∣aˉ∣2+∣bˉ∣2+2∣aˉ∣∣bˉ∣cosθ.Substitute the given values:
72=32+52+2(3)(5)cosθ, 49=9+25+30cosθ, 49=34+30cosθ.Solve for cosθ:
30cosθ=49−34=15, cosθ=3015=21.Thus,
θ=arccos(21)=3π.