Solveeit Logo

Question

Mathematics Question on Statistics

If xˉ\bar{x} is the mean of x1,x2,........,xnx_1, x_2, ........, x_n then for a0a \neq 0, the mean of ax1,ax2,.....,axn,x1a,x2a,......,xnaax_1,ax_2 , .....,ax_n , \frac{x_1}{a} , \frac{x_2}{a} , ...... , \frac{x_n}{a}is

A

(a+1a)xˉ\left( a + \frac{1}{a} \right) \bar{x}

B

(a+1a)xˉ2\left( a + \frac{1}{a} \right) \frac{\bar{x}}{2}

C

(a+1a)xˉn\left( a + \frac{1}{a} \right) \frac{\bar{x}}{n}

D

(a+1a)xˉ2n\frac{\left( a + \frac{1}{a} \right) \bar{x}}{2n}

Answer

(a+1a)xˉ2\left( a + \frac{1}{a} \right) \frac{\bar{x}}{2}

Explanation

Solution

Given x1+....+xnn=xˉ....(1)\frac{x_1 + ....+x_n}{n} = \bar{x} \:\:\: ....(1) ax1+....+axnan=xˉax1+....+axnan=axˉ......(2)\Rightarrow \frac{ax_{1}+....+ax_{n}}{an}= \bar{x} \:\: \Rightarrow \frac{ax_{1}+....+ax_{n}}{an}= a \bar{x} ......(2) Also, from (1), we have 1ax1+....+1axn1an\frac{\frac{1}{a}x_{1}+....+\frac{1}{a}x_{n}}{\frac{1}{a}n} x1a+....+xnan=xˉa...(3) \Rightarrow \frac{\frac{x_{1}}{a}+....+\frac{x_{n}}{a}}{n}=\frac{\bar{x}}{a} \:\:\:\: ...(3) So, the mean of ax1,........,axnax_1, ........, ax_n, x1a........,xna\frac{x_1}{a} ........, \frac{x_n}{a} is axˉxˉa2=xˉ2(a+1a)\frac{a \bar{x}-\frac{\bar{x}}{a}}{2} =\frac{\bar{x}}{2}\left(a+\frac{1}{a}\right)