Solveeit Logo

Question

Mathematics Question on Vectors

If aˉ=2i^+3j^4k^\bar{a}=2\hat{i}+3\hat{j}-4\hat{k} and bˉ=i^+3j^+2k^\bar{b}=\hat{i}+3\hat{j}+2\hat{k}, then a unit vector in the direction of aˉ+bˉ\bar a +\bar b is

A

16(3i^+6j^2k^)\frac{1}{6}(3\hat{i}+6\hat{j}-2\hat{k})

B

170(3i^+6j^5k^)\frac{1}{\sqrt{70}}(3\hat{i}+6\hat{j}-5\hat{k})

C

17(3i^+6j^2k^)\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})

D

150(3i^+6j^3k^)\frac{1}{\sqrt{50}}(3\hat{i}+6\hat{j}-3\hat{k})

E

16(i^+2j^k^)\frac{1}{\sqrt{6}}(\hat{i}+2\hat{j}-\hat{k})

Answer

17(3i^+6j^2k^)\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})

Explanation

Solution

The correct option is (C) : 17(3i^+6j^2k^)\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})