Solveeit Logo

Question

Question: If \(b^{2} + c^{2} = 0\)...

If b2+c2=0b^{2} + c^{2} = 0

A

a2+c2=0a^{2} + c^{2} = 0

B

b2+d2=0b^{2} + d^{2} = 0

C

z=x+iy,z1/3=aibz = x + iy,z^{1/3} = a - ib

D

xayb=k(a2b2)\frac{x}{a} - \frac{y}{b} = k(a^{2} - b^{2})

Answer

z=x+iy,z1/3=aibz = x + iy,z^{1/3} = a - ib

Explanation

Solution

23i4i=(23i)(4+i)(4+i)(4i)\frac{2 - 3i}{4 - i} = \frac{(2 - 3i)(4 + i)}{(4 + i)(4 - i)}, =8+312i+2i16+1= \frac{8 + 3 - 12i + 2i}{16 + 1}

=1110i17=11+10i17= \frac{11 - 10i}{17} = \frac{11 + 10i}{17}

z=1+iz = 1 + i

Hence, zˉ=1i\bar{z} = 1 - i.