Solveeit Logo

Question

Question: If \[B\] is a nonsingular matrix and \[A\] is a square matrix then \[\det \left( {{B^{ - 1}}AB} \rig...

If BB is a nonsingular matrix and AA is a square matrix then det(B1AB)\det \left( {{B^{ - 1}}AB} \right) is equal to
A. det(A)\det \left( A \right)
B. det(B)\det \left( B \right)
C. det(B1)\det \left( {{B^{ - 1}}} \right)
D. det(A1)\det \left( {{A^{ - 1}}} \right)

Explanation

Solution

- Hint: First of all, split the matrices inside the determinants by using the multiplicative properties of determinants. Then make the product of two matrices equal to a unit matrix to obtain the required answer.

Complete step-by-step solution -

Given BB is a nonsingular matrix and AA is a square matrix.
Now, consider det(B1AB)\det \left( {{B^{ - 1}}AB} \right)
We know that det(ABC)=det(A)det(B)det(C)\det \left( {ABC} \right) = \det \left( A \right)\det \left( B \right)\det \left( C \right), so we have
det(B1AB)=det(B1)det(A)det(B)\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}} \right)\det \left( A \right)\det \left( B \right)
As determinants obeys commutative property of multiplication, we have
det(B1AB)=det(B1)det(B)det(A)\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}} \right)\det \left( B \right)\det \left( A \right)
We know that, det(AB)=det(A)det(B)\det \left( {AB} \right) = \det \left( A \right)\det \left( B \right)
det(B1AB)=det(B1B)det(A)\det \left( {{B^{ - 1}}AB} \right) = \det \left( {{B^{ - 1}}B} \right)\det \left( A \right)
As B1B=I{B^{ - 1}}B = I, we have
det(B1AB)=det(I)det(A)\det \left( {{B^{ - 1}}AB} \right) = \det \left( I \right)\det \left( A \right)
We know that, det(I)=1\det \left( I \right) = 1
det(B1AB)=det(A)\therefore \det \left( {{B^{ - 1}}AB} \right) = \det \left( A \right)
Thus, the correct option is A. det(A)\det \left( A \right)
Note: The multiplicative property of determinants tells us that the det of product of the given matrices is equal to their product of individual det of matrices. The product of a matrix and its inverse matrix gives us a unit matrix.