Solveeit Logo

Question

Question: If \(b + ia\), then \(a + ib\)is equal to....

If b+iab + ia, then a+iba + ibis equal to.

A

5

B

6

C

– 5

D

– 4

Answer

5

Explanation

Solution

Given that b=20b = 2012i2+i+4i3+2i=(12i)(3+2i)+(4i)(2+i)(2+i)(3+2i)\frac{1 - 2i}{2 + i} + \frac{4 - i}{3 + 2i} = \frac{(1 - 2i)(3 + 2i) + (4 - i)(2 + i)}{(2 + i)(3 + 2i)},

=50120i65=10132413i= \frac{50 - 120i}{65} = \frac{10}{13} - \frac{24}{13}iand a+ib>c+ida + ib > c + id

ib=id=0ib = id = 0

Aliter : b=d=0b = d = 0(i0)(\because i \neq 0)

x+iy=32+cosθ+isinθx + iy = \frac{3}{2 + \cos\theta + i\sin\theta}

=3(2+cosθisinθ)(2+cosθ)2+sin2θ=6+3cosθ3isinθ4+cos2θ+4cosθ+sin2θ= \frac{3(2 + \cos\theta - i\sin\theta)}{(2 + \cos\theta)^{2} + \sin^{2}\theta} = \frac{6 + 3\cos\theta - 3i\sin\theta}{4 + \cos^{2}\theta + 4\cos\theta + \sin^{2}\theta}

=[6+3cosθ5+4cosθ]+i[3sinθ5+4cosθ]= \left\lbrack \frac{6 + 3\cos\theta}{5 + 4\cos\theta} \right\rbrack + i\left\lbrack \frac{- 3\sin\theta}{5 + 4\cos\theta} \right\rbrack

a2+b2+c2+2a+a2b2c2+2ib(1+a)1+1+2ac+2(a+c)\frac{a^{2} + b^{2} + c^{2} + 2a + a^{2} - b^{2} - c^{2} + 2ib(1 + a)}{1 + 1 + 2ac + 2(a + c)}