Question
Question: If \(b + ia\), then \(a + ib\)is equal to....
If b+ia, then a+ibis equal to.
A
5
B
6
C
– 5
D
– 4
Answer
5
Explanation
Solution
Given that b=20⇒ 2+i1−2i+3+2i4−i=(2+i)(3+2i)(1−2i)(3+2i)+(4−i)(2+i),
=6550−120i=1310−1324iand a+ib>c+id
∴ib=id=0
Aliter : b=d=0⇒ (∵i=0)
⇒x+iy=2+cosθ+isinθ3
=(2+cosθ)2+sin2θ3(2+cosθ−isinθ)=4+cos2θ+4cosθ+sin2θ6+3cosθ−3isinθ
=[5+4cosθ6+3cosθ]+i[5+4cosθ−3sinθ]
1+1+2ac+2(a+c)a2+b2+c2+2a+a2−b2−c2+2ib(1+a)