Solveeit Logo

Question

Physics Question on the earth's magnetic field

If BH=13BVB_{H}=\frac{1}{\sqrt{3}} B_{V}, find angle of dip. (where symbols have their usual meanings)

A

6060^{\circ}

B

3030^{\circ}

C

4545^{\circ}

D

9090^{\circ}

Answer

6060^{\circ}

Explanation

Solution

Magnetic dip or magnetic inclination at a place is defined as the angle which the direction of total strength of earths magnetic field makes with a horizontal line in magnetic meridian.
It is the angle by which total intensity of earths magnetic field dips or comes up out of the horizontal plane. It is represented by 88.
Magnetic dip or magnetic inclination is given by,
tanδ=BVBH\tan \delta=\frac{B_{V}}{B_{H}} \ldots (i)
where BVB_{V} and BHB_{H} are vertical and horizontal components of earths magnetic field, respectively
Given, BH=13BVB_{H}=\frac{1}{\sqrt{3}} B_{V}
BVBH=3\therefore \frac{B_{V}}{B_{H}}=\sqrt{3} \ldots (ii)
From Eqs. (i) and (ii), we get
tanδ=3\tan \delta=\sqrt{3}
δ=60\therefore \delta=60^{\circ}