Solveeit Logo

Question

Question: If \(B,C\) are \(n\) rowed square matrices and if \(A=B+C\), \(BC=CB\), \({{C}^{2}}=O\), then show t...

If B,CB,C are nn rowed square matrices and if A=B+CA=B+C, BC=CBBC=CB, C2=O{{C}^{2}}=O, then show that for every nNn\in N, An+1=Bn(B+(n+1)C){{A}^{n+1}}={{B}^{n}}\left( B+\left( n+1 \right)C \right).

Explanation

Solution

To prove the required condition, we will consider the given equation i.e. A=B+CA=B+C and calculates the value of An+1{{A}^{n+1}} by using the above equation. Now we will use the binomial expression (a+b)n=an+nC1an1b+nC2an2b2+...+nCn1abn1+bn{{\left( a+b \right)}^{n}}={{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{{b}^{n}} and the remaining given equations that are BC=CBBC=CB, C2=0{{C}^{2}}=0. After using above equations in the value of An+1{{A}^{n+1}} we will get our final result.

Complete step by step answer:
Given that, B,CB,C are nn rowed square matrices and A=B+CA=B+C.
Now the value of An+1{{A}^{n+1}} can be calculated by using the above equation as
An+1=(B+C)n+1{{A}^{n+1}}={{\left( B+C \right)}^{n+1}}
For this problem we are denoting the matrix CC by the letter DD, then the above equation modified as
An+1=(B+D)n+1{{A}^{n+1}}={{\left( B+D \right)}^{n+1}}
We have the binomial expansion of (a+b)n{{\left( a+b \right)}^{n}} as (a+b)n=an+nC1an1b+nC2an2b2+...+nCn1abn1+bn{{\left( a+b \right)}^{n}}={{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}b+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n-1}}a{{b}^{n-1}}+{{b}^{n}} so expanding the term (B+D)n+1{{\left( B+D \right)}^{n+1}} by using this expansion in the above equation, then we will get
An+1=(B+D)n+1 An+1=Bn+1+n+1C1Bn+11D+n+1C2Bn+12D2+...+n+1Cn+11Bn+1nDn+Dn+1 An+1=Bn+1+n+1C1BnD+n+1C2Bn1D2+...+n+1CnBDn+Dn+1 \begin{aligned} & {{A}^{n+1}}={{\left( B+D \right)}^{n+1}} \\\ & \Rightarrow {{A}^{n+1}}={{B}^{n+1}}+{}^{n+1}{{C}_{1}}{{B}^{n+1-1}}D+{}^{n+1}{{C}_{2}}{{B}^{n+1-2}}{{D}^{2}}+...+{}^{n+1}{{C}_{n+1-1}}{{B}^{n+1-n}}{{D}^{n}}+{{D}^{n+1}} \\\ & \Rightarrow {{A}^{n+1}}={{B}^{n+1}}+{}^{n+1}{{C}_{1}}{{B}^{n}}D+{}^{n+1}{{C}_{2}}{{B}^{n-1}}{{D}^{2}}+...+{}^{n+1}{{C}_{n}}B{{D}^{n}}+{{D}^{n+1}} \\\ \end{aligned}
In the problem we have given that C2=O{{C}^{2}}=O, we are denoting matrix CC by the letter DD D2=O\Rightarrow {{D}^{2}}=O
If D2=O{{D}^{2}}=O then D3=D4=...=Dn=O{{D}^{3}}={{D}^{4}}=...={{D}^{n}}=O, now the value of An+1{{A}^{n+1}} is modified as
An+1=Bn+1+(n+1)BnD+O+O+O+...+O An+1=Bn+1+(n+1)BnD \begin{aligned} & {{A}^{n+1}}={{B}^{n+1}}+\left( n+1 \right){{B}^{n}}D+O+O+O+...+O \\\ & \Rightarrow {{A}^{n+1}}={{B}^{n+1}}+\left( n+1 \right){{B}^{n}}D \\\ \end{aligned}
Taking Bn{{B}^{n}} as common in the above equation, then we will have
An+1=Bn[B+(n+1)D]{{A}^{n+1}}={{B}^{n}}\left[ B+\left( n+1 \right)D \right]
Here we have denoted matrix CC by the letter DD, so we need to replace the letter DD with CC to get the result.
An+1=Bn[B+(n+1)C]\therefore {{A}^{n+1}}={{B}^{n}}\left[ B+\left( n+1 \right)C \right]
Hence Proved.

Note: For this type of problems we can also use the substitution method i.e. check the given condition according to the given values for different values of nn i.e. n=1,2,3,..n=1,2,3,..
For example, for n=1n=1
The value of An+1{{A}^{n+1}} is
An+1=Bn[B+(n+1)C] A1+1=B1[B+(1+1)C] A2=B[B+2C] A2=B2+2BC....(i) \begin{aligned} & {{A}^{n+1}}={{B}^{n}}\left[ B+\left( n+1 \right)C \right] \\\ & \Rightarrow {{A}^{1+1}}={{B}^{1}}\left[ B+\left( 1+1 \right)C \right] \\\ & \Rightarrow {{A}^{2}}=B\left[ B+2C \right] \\\ & \Rightarrow {{A}^{2}}={{B}^{2}}+2BC....\left( \text{i} \right) \\\ \end{aligned}
Now the value of A2{{A}^{2}} from the given equation A=B+CA=B+C is given by
A2=(B+C)2 A2=B2+2BC+C2 \begin{aligned} & {{A}^{2}}={{\left( B+C \right)}^{2}} \\\ & \Rightarrow {{A}^{2}}={{B}^{2}}+2BC+{{C}^{2}} \\\ \end{aligned}
Given that C2=O{{C}^{2}}=O
A2=B2+2BC...(ii)\therefore {{A}^{2}}={{B}^{2}}+2BC...\left( \text{ii} \right)
From equations (i)\left( \text{i} \right) and (ii)\left( \text{ii} \right) we got the same result. So, we can conclude that An+1=Bn(B+(n+1)C){{A}^{n+1}}={{B}^{n}}\left( B+\left( n+1 \right)C \right) is valid for every nNn\in N. If it is a multiple-choice question and there is another option with the same result for n=1n=1, then it is better to check the condition for n=2n=2.