Solveeit Logo

Question

Question: If \(B\) be the exterior angle of a regular polygon of \(n\) sides and \(A\) is any constant, then p...

If BB be the exterior angle of a regular polygon of nn sides and AA is any constant, then prove that sinA+sin(A+B)+sin(A+2B)+.........n\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n terms=0 = 0

Explanation

Solution

Hint-This question can be solved by the formula when sin series is in Arithmetic Progression. In A.P two consecutive numbers in a series have common differences.

Now given that the regular polygon is nn - sided, also AAis any constant and BB is an exterior angle and we have to prove that
sinA+sin(A+B)+sin(A+2B)+.........n\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n terms=0 = 0
Now we know that for ann - sided polygon,
Sum of interior angle = (n2)π{\text{ = }}\left( {n - 2} \right)\pi
Sum of exterior angle = 2nπ(n2)π{\text{ = 2}}n\pi - \left( {n - 2} \right)\pi
=2nπnπ+2π =nπ+2π or B=nπ+2πn  = 2n\pi - n\pi + 2\pi \\\ = n\pi + 2\pi \\\ {\text{or }}B = \dfrac{{n\pi + 2\pi }}{n} \\\
For finding the value of BB we divide sum of exterior angle bynn because we want the value of exterior angle not the value of its sum
Now we have given, sinA+sin(A+B)+sin(A+2B)+.........n\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n terms
We can clearly see it is a A.P. witha=Aa = A andd=B=nπ+2πnd = B = \dfrac{{n\pi + 2\pi }}{n}
Now we know that the sum of sin series when angle is in A.P. = sin(nd2)sin(d2)sin(2a+(n1)d2){\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{nd}}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{d}{2}} \right)}}{\text{sin}}\left( {\dfrac{{2a + (n - 1)d}}{2}} \right)
Now putting the value ofaa anddd we get,
Sum of sin series when angle is in A.P.
 = sin(n2×nπ+2πn)sin(nπ+2π2n)×sin(2A+(n1)×nπ+2πn2)  = sin(nπ+2π2)sin(nπ+2π2n)×sin(2A+(n1)×nπ+2πn2)  {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{n}{2} \times \dfrac{{n\pi + 2\pi }}{n}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\\ {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\\
Now let us observesin(nπ+2π2){\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)
Or we can write it assin(n+22)π{\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi
Now it is given thatnn is the no. of sides of a regular polygon .Therefore it is an integer.
or nI or n+2I or n+22I  {\text{or }}n \in I \\\ {\text{or }}n + 2 \in I \\\ {\text{or }}\dfrac{{n + 2}}{2} \in I \\\
Or we can say
sin(n+22)π = sin(mπ) mI{\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi {\text{ = sin}}\left( {m\pi } \right){\text{ }}m \in I
And we know thatsin(mπ)=0 mI{\text{sin}}\left( {m\pi } \right) = 0{\text{ }}m \in I
 = sin(nπ+2π2)sin(nπ+2π2n)×sin(2A+(n1)×nπ+2πn2) =sin(mπ)sin(mπn)×sin(2A+n1nmπ)  \Rightarrow {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\\ = \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\\
Now we know thatsin(mπ)=0{\text{sin}}\left( {m\pi } \right) = 0
 sinA+sin(A+B)+sin(A+2B)+.........n terms=sin(mπ)sin(mπn)×sin(2A+n1nmπ) =0  \Rightarrow {\text{ }}\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n{\text{ terms}} = \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\\ = 0 \\\
Hence Proved

Note: Whenever we face such types of problems the key concept is that we should know the formula when the sin series is in A.P. Like in this question it is given that the polygon is regular and we write the formula for sum of interior as well as exterior angle then we see that it is in A.P. and we know the formula when Sin series is in A.P. and thus we prove it.