Solveeit Logo

Question

Question: If b and c are any two non-collinear vectors, and a is any vector, then find the value of \(\left( a...

If b and c are any two non-collinear vectors, and a is any vector, then find the value of (a.b)b+(a.c)c+a.(b×c)b×c2(b×c)\left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b\times c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right).
A. a
B. b
C. c
D. none of these

Explanation

Solution

We need to simplify the problem by using the given hints of vectors b and c being any two non-collinear vectors. We treat them as unit vectors. We find the general form of the given equation which is also similar to its specific form.

Complete step-by-step solution:
We know that b×cb,b×cc\overrightarrow{b}\times \overrightarrow{c}\bot \overrightarrow{b},\overrightarrow{b}\times \overrightarrow{c}\bot \overrightarrow{c}.
The three parts (a.b),(a.c),a.(b×c)\left( a.b \right),\left( a.c \right),a.\left( b\times c \right) are all scalar values.
We are trying to take the projection of a vector “a” on vector b, vector a on vector c, vector “a” on vector (b×c)\left( b\times c \right).
As the vectors, b and c are any two non-collinear vectors, and a is any vector, to simplify the problem we take vectors b and c as unit vectors.
So, b=i^,c=j^,a=xi^+yj^+zk^\overrightarrow{b}=\widehat{i},\overrightarrow{c}=\widehat{j},\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}.
Now we find the value of (b×c)\left( b\times c \right).
So, (b×c)=(i^×j^)=k^\left( b\times c \right)=\left( \widehat{i}\times \widehat{j} \right)=\widehat{k}. And the modulus value will be unit. So, (b×c)=k^=1\left| \left( b\times c \right) \right|=\left| \widehat{k} \right|=1.
We solve (a.b)b+(a.c)c+a.(b×c)b×c2(b×c)\left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b\times c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right).
Value of (a.b)b=((xi^+yj^+zk^).i^)i^=xi^\left( a.b \right)b=\left( \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\widehat{i} \right)\widehat{i}=x\widehat{i}
Value of (a.c)c=((xi^+yj^+zk^).j^)j^=yj^\left( a.c \right)c=\left( \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\widehat{j} \right)\widehat{j}=y\widehat{j}
Value of a.(b×c)b×c2(b×c)=(xi^+yj^+zk^).k^12k^=z1k^=zk^\dfrac{a.\left( b\times c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)=\dfrac{\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\widehat{k}}{{{1}^{2}}}\widehat{k}=\dfrac{z}{1}\widehat{k}=z\widehat{k}
So, (a.b)b+(a.c)c+a.(b×c)b×c2(b×c)=xi^+yj^+zk^=a\left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b\times c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)=x\widehat{i}+y\widehat{j}+z\widehat{k}=\overrightarrow{a}.
The correct option is A.
Note: In the specific cases we can consider a vector p=pxi^+pyj^+pzk^\overrightarrow{p}={{p}_{x}}\widehat{i}+{{p}_{y}}\widehat{j}+{{p}_{z}}\widehat{k}. Here the axes are normal X, Y, Z axes but we can change it to any form possible. We change them in α^,β^,λ^\widehat{\alpha },\widehat{\beta },\widehat{\lambda }. Then we can treat α^,β^,λ^\widehat{\alpha },\widehat{\beta },\widehat{\lambda } as bb,cc,(b×c)(b×c)\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|},\dfrac{\overrightarrow{c}}{\left| \overrightarrow{c} \right|},\dfrac{\overrightarrow{\left( b\times c \right)}}{\left| \overrightarrow{\left( b\times c \right)} \right|} respectively. The projection will be also similar to vector a.