Solveeit Logo

Question

Question: If \(b > a\), then the equation \((x - a)(x - b) - 1 = 0\), has...

If b>ab > a, then the equation (xa)(xb)1=0(x - a)(x - b) - 1 = 0, has

A

Both roots in [a b]

B

Both roots in (– ∞, a)

C

Both roots in (b, ∞)

D

One root in (– ∞, a) and other in (b, +∞)

Answer

One root in (– ∞, a) and other in (b, +∞)

Explanation

Solution

We have, (xa)(xb)1=0(x - a)(x - b) - 1 = 0

(xa)(xb)=1>0(x - a)(x - b) = 1 > 0(xa)(xb)>0(x - a)(x - b) > 0 [∵ b > a]

x],a[]b,+[x \in \rbrack - \infty,a\lbrack \cup \rbrack b, + \infty\lbrack , i.e. (,a)( - \infty,a) and (b, ∞).