Solveeit Logo

Question

Question: If \(b = a - \frac{a^{2}}{2} + \frac{a^{3}}{3} - \frac{a^{4}}{4} + ..\)then \(b + \frac{b^{2}}{2!} +...

If b=aa22+a33a44+..b = a - \frac{a^{2}}{2} + \frac{a^{3}}{3} - \frac{a^{4}}{4} + ..then b+b22!+b33!+b44!+...=b + \frac{b^{2}}{2!} + \frac{b^{3}}{3!} + \frac{b^{4}}{4!} + ...\infty =

A

logea\log_{e}a

B

logeb\log_{e}b

C

aa

D

eae^{a}

Answer

aa

Explanation

Solution

Given 2e2e

3e3e4e4e