Question
Mathematics Question on Relations and functions
If b2−4ac=0, a>0, then the domain of the function y=log(ax3+(a+b)x2+(b+c)x+c) is
A
R-\left\\{-\frac{b}{2a}\right\\}
B
R-\left\\{\left\\{-\frac{b}{2a}\right\\}\cup\left\\{x : x \ge-1\right\\}\right\\}
C
R-\\{\left\\{-\frac{b}{2a}\right\\}\cap (\infty, -1]\\}
D
None of these
Answer
R-\\{\left\\{-\frac{b}{2a}\right\\}\cap (\infty, -1]\\}
Explanation
Solution
We have y=log(ax3+bx2+cx+ax2+bx+c) =log(x(ax2+bx+c)+ax2+bx+c) =log((x+1)(ax2+bx+c)) =log[(x+1)a((x+2ab)2+ac−4a2b2)] =log[(x+1)a((x+2ab)2−4a2b2−4ac)] =log[a(x+1)(x+2ab)2] ∴y is defined if x>−1 and x=−2ab ∴y is defined if x \notin \left\\{-\frac{b}{2a}\right\\} \cap (-\infty, -1] ∴ Domain =R−2ab∩(−∞,−1]