Solveeit Logo

Question

Mathematics Question on Relations and functions

If b24ac=0b^2 - 4ac = 0, a>0a > 0, then the domain of the function y=log(ax3+(a+b)x2+(b+c)x+c)y = log(ax^3 + (a + b)x^2 + (b + c)x + c) is

A

R-\left\\{-\frac{b}{2a}\right\\}

B

R-\left\\{\left\\{-\frac{b}{2a}\right\\}\cup\left\\{x : x \ge-1\right\\}\right\\}

C

R-\\{\left\\{-\frac{b}{2a}\right\\}\cap (\infty, -1]\\}

D

None of these

Answer

R-\\{\left\\{-\frac{b}{2a}\right\\}\cap (\infty, -1]\\}

Explanation

Solution

We have y=log(ax3+bx2+cx+ax2+bx+c)y=log\left(ax^{3}+bx^{2}+cx+ax^{2}+bx+c\right) =log(x(ax2+bx+c)+ax2+bx+c)= log\left(x\left(ax^{2} + bx + c\right) + ax^{2} + bx + c\right) =log((x+1)(ax2+bx+c))= log\left(\left(x +1)( ax^{2} + bx + c\right)\right) =log[(x+1)a((x+b2a)2+cab24a2)]=log \left[\left(x+1\right)a\left(\left(x+\frac{b}{2a}\right)^{2}+\frac{c}{a}-\frac{b^{2}}{4a^{2}}\right)\right] =log[(x+1)a((x+b2a)2b24ac4a2)]=log\left[\left(x+1\right)a\left(\left(x+\frac{b}{2a}\right)^{2}-\frac{b^{2}-4ac}{4a^{2}}\right)\right] =log[a(x+1)(x+b2a)2]=log\left[a\left(x+1\right)\left(x+\frac{b}{2a}\right)^{2}\right] y\therefore y is defined if x>1x >-1 and xb2ax \ne-\frac{b}{2a} y\therefore y is defined if x \notin \left\\{-\frac{b}{2a}\right\\} \cap (-\infty, -1] \therefore Domain =Rb2a(,1]=R\\{\\{-\frac{b}{2a}\\}\cap(-\infty, -1]\\}