Solveeit Logo

Question

Question: If ax<sup>2</sup>+\(\frac{b}{x}\)≥ c for all positive real values of x. Then...

If ax2+bx\frac{b}{x}≥ c for all positive real values of x. Then

A

27 ab2≥ 4 c3

B

27ac2≥ 4b3

C

27 bc2≥ 4a3

D

All are correct

Answer

27 ab2≥ 4 c3

Explanation

Solution

f(x) = ax2 + bx\frac{b}{x} – c ≥ 0

So that minimum value of (ax2+bxc)\left( ax^{2} + \frac{b}{x} - c \right) should be ≥ 0

f(x) = ax2 + bx\frac{b}{x} – c

f '(x) = 2ax – b/x2 f '(x) = 0 ⇒ x = (b2a)1/3\left( \frac{b}{2a} \right)^{1/3}and

f "(x) = 2a + 2bx3\frac{2b}{x^{3}} > 0 if x = (b2a)1/3\left( \frac{b}{2a} \right)^{1/3}

∴ f(x) has minima at x = (b2a)1/3\left( \frac{b}{2a} \right)^{1/3}

f(x) ≥ 0,f((b2a)1/3)f\left( \left( \frac{b}{2a} \right)^{1/3} \right) ≥ 0

a(b2a)23\left( \frac{b}{2a} \right)^{\frac{2}{3}} + b(b2a)13\frac{b}{\left( \frac{b}{2a} \right)^{\frac{1}{3}}}– c ≥ 0

a (b2a)\left( \frac{b}{2a} \right) + b ≥ c (b2a)1/3\left( \frac{b}{2a} \right)^{1/3}

(3b2)3\left( \frac{3b}{2} \right)^{3}b2a\frac{b}{2a} c3 ⇒  27ab2 ≥ 4c3.