Question
Question: If ax<sup>2</sup>+\(\frac{b}{x}\)≥ c for all positive real values of x. Then...
If ax2+xb≥ c for all positive real values of x. Then
A
27 ab2≥ 4 c3
B
27ac2≥ 4b3
C
27 bc2≥ 4a3
D
All are correct
Answer
27 ab2≥ 4 c3
Explanation
Solution
f(x) = ax2 + xb – c ≥ 0
So that minimum value of (ax2+xb−c) should be ≥ 0
f(x) = ax2 + xb – c
f '(x) = 2ax – b/x2 f '(x) = 0 ⇒ x = (2ab)1/3and
f "(x) = 2a + x32b > 0 if x = (2ab)1/3
∴ f(x) has minima at x = (2ab)1/3
f(x) ≥ 0,f((2ab)1/3) ≥ 0
a(2ab)32 + (2ab)31b– c ≥ 0
a (2ab) + b ≥ c (2ab)1/3
(23b)3 ≥ 2ab c3 ⇒ 27ab2 ≥ 4c3.