Question
Physics Question on Vectors
If |A×B| = 3 A.B then the value of |A + B| is
A
(A2+B2+3AB)21
B
A + B
C
(A2+B2+3AB)21
D
(A2+B2+AB)21
Answer
(A2+B2+AB)21
Explanation
Solution
We know that,
A×B=ABsinθ Also, A.B=ABcosθ Given, ∣A×B∣=√3A.B
Use ∣A×B∣=∣A∣∣B∣sinθ Then, ∣A×B∣=ABsinθ A.B=∣A∣∣B∣cosθ
∴ ABsinθ=√3ABcosθ tanθ=√3 ⟹θ=60o
Now, (A+B)2=A2+B2+2A.B =A2+B2+2ABcosθ
=A2+B2+2AB×21
=A2+B2+AB or ∣A+B∣
=(A2+B2+AB)21
So, the correct option is (D): (A2+B2+AB)21