Solveeit Logo

Question

Question: If \(A(x_{1},y_{1}),\mspace{6mu} B(x_{2},y_{2})\) and \(C(x_{3},y_{3})\) are the vertices of a trian...

If A(x1,y1),6muB(x2,y2)A(x_{1},y_{1}),\mspace{6mu} B(x_{2},y_{2}) and C(x3,y3)C(x_{3},y_{3}) are the vertices of a triangle, then the excentre with respect to B is.

A

(ax1bx2+cx3ab+c,ay1by2+cy3ab+c)\left( \frac{ax_{1} - bx_{2} + cx_{3}}{a - b + c},\frac{ay_{1} - by_{2} + cy_{3}}{a - b + c} \right)

B

(ax1+bx2cx3a+bc,ay1+by2cy3a+bc)\left( \frac{ax_{1} + bx_{2} - cx_{3}}{a + b - c},\frac{ay_{1} + by_{2} - cy_{3}}{a + b - c} \right)

C

(ax1bx2cx3abc,ay1by2cy3abc)\left( \frac{ax_{1} - bx_{2} - cx_{3}}{a - b - c},\frac{ay_{1} - by_{2} - cy_{3}}{a - b - c} \right)

D

None of these

Answer

(ax1bx2+cx3ab+c,ay1by2+cy3ab+c)\left( \frac{ax_{1} - bx_{2} + cx_{3}}{a - b + c},\frac{ay_{1} - by_{2} + cy_{3}}{a - b + c} \right)

Explanation

Solution

It is obvious