Solveeit Logo

Question

Question: If $ax^2+bx+c=0$ and $bx^2+cx+a=0$ have a common root, and a, b, c are non-zero, then $(\frac{a^3+b^...

If ax2+bx+c=0ax^2+bx+c=0 and bx2+cx+a=0bx^2+cx+a=0 have a common root, and a, b, c are non-zero, then (a3+b3+c3abc)(\frac{a^3+b^3+c^3}{abc})

Answer

3

Explanation

Solution

The condition for two quadratic equations A1x2+B1x+C1=0A_1x^2+B_1x+C_1=0 and A2x2+B2x+C2=0A_2x^2+B_2x+C_2=0 to have a common root is (A1C2A2C1)2=(A1B2A2B1)(B1C2B2C1)(A_1C_2 - A_2C_1)^2 = (A_1B_2 - A_2B_1)(B_1C_2 - B_2C_1). For the given equations ax2+bx+c=0ax^2+bx+c=0 and bx2+cx+a=0bx^2+cx+a=0, we have A1=a,B1=b,C1=cA_1=a, B_1=b, C_1=c and A2=b,B2=c,C2=aA_2=b, B_2=c, C_2=a. Substituting these values into the condition: (aabc)2=(acbb)(bacc)(a \cdot a - b \cdot c)^2 = (a \cdot c - b \cdot b)(b \cdot a - c \cdot c) (a2bc)2=(acb2)(abc2)(a^2 - bc)^2 = (ac - b^2)(ab - c^2) Expanding both sides: a42a2bc+b2c2=a2bcac3ab3+b2c2a^4 - 2a^2bc + b^2c^2 = a^2bc - ac^3 - ab^3 + b^2c^2 a42a2bc=a2bcac3ab3a^4 - 2a^2bc = a^2bc - ac^3 - ab^3 a4+ab3+ac3=3a2bca^4 + ab^3 + ac^3 = 3a^2bc Since a0a \neq 0, divide by aa: a3+b3+c3=3abca^3 + b^3 + c^3 = 3abc Therefore, a3+b3+c3abc=3abcabc=3\frac{a^3+b^3+c^3}{abc} = \frac{3abc}{abc} = 3.