Solveeit Logo

Question

Question: If \(a^{x} = (x + y + z)^{y},a^{y} = (x + y + z)^{z}\), \(a^{z} = (x + y + z)^{x},\) then...

If ax=(x+y+z)y,ay=(x+y+z)za^{x} = (x + y + z)^{y},a^{y} = (x + y + z)^{z}, az=(x+y+z)x,a^{z} = (x + y + z)^{x}, then

A

x=y=z=a/3x = y = z = a/3

B

x+y+z=a/3x + y + z = a/3

C

x+y+z=0x + y + z = 0

D

None of these

Answer

x=y=z=a/3x = y = z = a/3

Explanation

Solution

ax.ay.az=(x+y+z)y+z+xa^{x}.a^{y}.a^{z} = (x + y + z)^{y + z + x}

ax+y+z=(x+y+z)x+y+z\Rightarrow a^{x + y + z} = (x + y + z)^{x + y + z} \Rightarrow x+y+z=ax + y + z = a

Now, ax=(x+y+z)y=aya^{x} = (x + y + z)^{y} = a^{y} \Rightarrow x=yx = y, similarly y=zy = z

x=y=z=a3\therefore x = y = z = \frac{a}{3}.