Solveeit Logo

Question

Question: If \(a^{x} = b^{y} = (ab)^{xy},\) then \(x + y =\)...

If ax=by=(ab)xy,a^{x} = b^{y} = (ab)^{xy}, then x+y=x + y =

A

0

B

1

C

xy

D

None of these

Answer

1

Explanation

Solution

ax=by=(ab)xya^{x} = b^{y} = (ab)^{xy}

xlna=ylnb=xyln(ab)=k(say)\Rightarrow x\ln a = y\ln b = xy\ln(ab) = k(\text{say})

lna=kx,lnb=ky\ln a = \frac{k}{x},\ln b = \frac{k}{y}

ln(ab)=kxy\ln(ab) = \frac{k}{xy} \Rightarrow lna+lnb=kxy\ln a + \ln b = \frac{k}{xy} \Rightarrow kx+ky=kxy\frac{k}{x} + \frac{k}{y} = \frac{k}{xy}

\Rightarrow 1x+1y=1xy\frac{1}{x} + \frac{1}{y} = \frac{1}{xy} \Rightarrow x+yxy=1xy\frac{x + y}{xy} = \frac{1}{xy}; \therefore x+y=1x + y = 1.