Solveeit Logo

Question

Question: If \(a^{x - 1} = bc,b^{y - 1} = ca,c^{z - 1} = ab,\) then \(\sum_{}^{}{(1/x) =}\)...

If ax1=bc,by1=ca,cz1=ab,a^{x - 1} = bc,b^{y - 1} = ca,c^{z - 1} = ab, then (1/x)=\sum_{}^{}{(1/x) =}

A

1

B

0

C

abc

D

None of these

Answer

1

Explanation

Solution

ax1=bcax=abca^{x - 1} = bc \Rightarrow a^{x} = abc

\therefore ax=by=cz=abc=k(say)a^{x} = b^{y} = c^{z} = abc = k(\text{say})

a=k1/x1x=logka\Rightarrow a = k^{1/x} \Rightarrow \frac{1}{x} = \log_{k}a;

1x=logka+logkb+logkc=logkabc=logabcabc=1\sum_{}^{}{\frac{1}{x} = \log_{k}a + \log_{k}b + \log_{k}c} = \log_{k}abc = \log_{abc}abc = 1