Question
Question: If \(a\tan\theta = b\), then \(a\cos 2\theta + b\sin 2\theta =\)...
If atanθ=b, then acos2θ+bsin2θ=
A
a
B
b
C
−a
D
−b
Answer
a
Explanation
Solution
Given that tanθ=ab.
Now, acos2θ+bsin2θ=a(1+tan2θ1−tan2θ)+b(1+tan2θ2tanθ)
Putting tanθ=ab, we get
=a(1+a2b21−a2b2)+b(1+a2b22ab)=a(a2+b2a2−b2)+b(a2+b22ba)
=(a2+b2)1{a3−ab2+2ab2}=a2+b2a(a2+b2)=a.