Solveeit Logo

Question

Question: If a<sup>x</sup> = b<sup>y</sup> = c<sup>z</sup>, where x, y, z are unequal positive numbers and a, ...

If ax = by = cz, where x, y, z are unequal positive numbers and a, b, c are in G.P., then x3 + z3

A

³ 2y3

B

£ 2y3

C

> 2y3

D

None of these

Answer

> 2y3

Explanation

Solution

Given ax = by = cz = k

\ a = k1xk^{\frac{1}{x}}, b = k1yk^{\frac{1}{y}}, c = k1zk^{\frac{1}{z}}

Q a, b, c are in G.P. Ž ba\frac{b}{a}= cb\frac{c}{b}

Ž k1y1xk^{\frac{1}{y} - \frac{1}{x}} = k1z1yk^{\frac{1}{z} - \frac{1}{y}}Ž 1y\frac{1}{y}1x\frac{1}{x}= 1z\frac{1}{z}1x\frac{1}{x}Ž x, y, z are in H.P.

Ž y = H.M. of x and z Ž xy\sqrt{xy}> y

and x3+z32\frac{x^{3} + z^{3}}{2}> (xy\sqrt{xy})3 > y3 Ž x3 + z3 > 2y3

\ [C] is correct.